Journal of Capital Medical University ›› 2020, Vol. 41 ›› Issue (3): 411-420.doi: 10.3969/j.issn.1006-7795.2020.03.017
• Basic Research • Previous Articles Next Articles
Shaletanati·Talabieke, Sun Zhipeng, Wang Luqi, You Hongjie, Luo Dali
Received:
2020-01-29
Online:
2020-06-21
Published:
2020-06-17
Supported by:
CLC Number:
Shaletanati·Talabieke, Sun Zhipeng, Wang Luqi, You Hongjie, Luo Dali. Effects of high glucose on store operated calcium entry and related protein expressions in H9C2 and neonatal rat ventricular cardiomyocytes[J]. Journal of Capital Medical University, 2020, 41(3): 411-420.
[1] Tate M, Grieve D J, Ritchie R H, et al. Are targeted therapies for diabetic cardiomyopathy on the horizon?[J]. Clin Sci, 2017, 131(10):897-915. [2] De Jong A M, Maass A H, Oberdorf-Maass S U, et al. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation[J]. Cardiovasc Res, 2011, 89(4):754-765. [3] Petersen C E,Wolf M J,Smyth J T. Drosophila suppression of store-operated calcium entry causes dilated cardiomyopathy of the heart[J].Biol Open, 2020,9(3):bio049999. [4] Bénard L, Oh J G, Cacheux M, et al. Cardiac STIM1 silencing impairs adaptive hypertrophy and promotes heart failure through inactivation of mTORC2/Akt signaling[J]. Circulation, 2016, 133(15):1458-1471. [5] Shaw R M, Colecraft H M. L-type calcium channel targeting and local signaling in cardiac myocytes[J]. Cardiovasc Res, 2013, 98(2):177-186. [6] Elaib Z, Saller F, Bobe R. The calcium entry-calcium refilling coupling[J]. Adv Exp Med Biol, 2016, 898:333-352. [7] Shen W W, Frieden M, Demaurex N, et al. Local cytosolic Ca2+ elevations are required for stromal interaction molecule 1(STIM1) de-oligomerization and termination of store-operated Ca2+ entry[J]. J Biol Chem, 2011, 286(42):36448-36459. [8] Amcheslavsky A, Wood M L, Yeormin A V, et al. Molecular biophysics of Orai store-operated Ca2+ channels[J]. Biophys J, 2015, 108(2):237-246. [9] Stathopulos P B, Schindl R, Fahrner M, et al. STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry[J]. Nat Commun, 2013, 4:2963. [10] Zhou Y, Srinivasan P, Razavi S, et al. Initial activation of STIM1, the regulator of store-operated calcium entry[J]. Nat Struct Mol Biol, 2013, 20(8):973-981. [11] Deler I, Plenk P, Fahrner M, et al. The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1[J]. J Biol Chem, 2013, 288(40):29025-29034. [12] Thompson J L, Shuttleworth T J. A plasma membrane-targeted cytosolic domain of STIM1 selectively activates ARC channels, an arachidonate-regulated store-independent Orai channel[J]. Channels (Austin), 2012, 6(5):370-378. [13] Ohba T, Watanabe H, Murakami M, et al. Essential role of STIM1 in the development of cardiomyocyte hypertrophy[J]. Biochem Biophys Res Commun, 2009, 389(1):172-176. [14] Stathopulos P B, Zheng L, Li G Y, et al. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry[J]. Cell, 2008, 135(1):110-122. [15] Hirve N, Rajanikanth V, Hogan P G, et al. Coiled-coil formation conveys a STIM1 signal from ER lumen to cytoplasm[J]. Cell Rep, 2018, 22(1):72-83. [16] Yang X, Jin H, Cai X, et al. Structural and mechanistic insights into the activation of stromal interaction molecule 1(STIM1)[J]. Proc Natl Acad Sci U S A, 2012, 109(15):5657-5662. [17] López E, Salido G M, Rosado J A, et al. Unraveling STIM2 function[J]. J Physiol Biochem, 2012, 68(4):619-633. [18] Bonhenry D, Schober R, Schmidt T, et al. Mechanistic insights into the Orai channel by molecular dynamics simulations[J]. Semin Cell Dev Biol, 2019, 94:50-58. [19] Madl J, Weghuber J, Fritsch R, et al. Resting state Orai1 diffuses as homotetramer in the plasma membrane of live mammalian cells[J]. J Biol Chem, 2010, 285(52):41135-41142. [20] Hou X, Pedil, Diver M M, et al. Crystal structure of the calcium release-activated calcium channel Orai[J]. Science, 2012, 338(6112):1308-1313. [21] Perni S, Dynes J L, Yeromin A V, et al. Nanoscale patterning of STIM1 and Orai1 during store-operated Ca2+ entry[J]. Proc Natl Acad Sci U S A, 2015, 112(40):5533-5542. [22] Palty R, Isacoff E Y, et al. Cooperative binding of stromal interaction molecule 1(STIM1) to the N and C Termini of calcium release-activated calcium modulator 1(Orai1)[J]. J Biol Chem, 2016, 291(1):334-341. [23] Tirado-Lee L, Yamashita M, Prakriya M. Conformational changes in the Orai1 C-terminus evoked by STIM1 binding[J]. Plos One, 2015, 10(6):e0128622. [24] Maléth J, Choi S, Muallem S, et al. Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating[J]. Nat Commun, 2014, 5:5843. [25] Li X, Wu G, Yang Y, et al. Calmodulin dissociates the STIM1-Orai1 complex and STIM1 oligomers[J]. Nat Commun, 2017, 8(1):1042. [26] Wu M M, Covington E D, Lewis R S, et al. Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum-plasma membrane junctions[J]. Mol Biol Cell, 2014, 25(22):3672-3685. [27] Luo X, Hojayev B, Jiang N, et al. STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy[J]. J Mol Cell Cardiol, 2012, 52(1):136-147. [28] Eder P. Cardiac remodeling and disease:SOCE and TRPC Signaling in cardiac pathology[J]. Adv Exp Med Biol, 2017, 993:505-521. [29] Golovina V A. Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum[J]. J Physiol, 2005, 564:737-749. [30] Zhang B, Jiang J, Yue Z, et al. Store-operated Ca2+ entry (SOCE) contributes to angiotensin II-induced cardiac fibrosis in cardiac fibroblasts[J]. J Pharmacol Sci, 2016, 132(3):171-180. [31] Hunton D L, Lucchesi P A, Pang Y, et al. Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes[J]. J Biol Chem, 2002, 277(16):14266-14273.. [32] Voelkers M, Salz M, Herzog N, et al. Orai1 and STIM1 regulate normal and hypertrophic growth in cardiomyocytes[J]. J Molecular Cell Cardiol, 2010, 48(6):1329-1334. [33] Ohba T, Watanabe H, Murakami M, et al. Essential role of STIM1 in the development of cardiomyocyte hypertrophy[J]. Biochem Biophys Res Commun, 2009, 389(1):172-176. [34] Kumar S, Kain V, Sitasawad S L, et al. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways[J]. Biochim Biophys Acta, 2012, 1820(7):907-920. [35] He F, Wu Q, Xu B, et al. Suppression of STIM1 reduced intracellular calcium concentration and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cells[J]. Biosci Rep, 2017, 37(6):BSR20171249. [36] Pang Y, Hunton D L, Bounelis P, et al. Hyperglycemia inhibits capacitative calcium entry and hypertrophy in neonatal cardiomyocytes[J]. Diabetes, 2002, 51(12):3461-3467. [37] Correll R N, Goonasekera S A, Van Berlo J H, et al. STIM1 elevation in the heart results in aberrant Ca2+ handling and cardiomyopathy[J]. J Mol Cell Cardiol, 2015, 87:38-47. [38] Bartoli F, Bailey M A, Rode B, et al. Orai1 channel inhibition preserves left ventricular systolic function and normal ca handling after pressure overload[J]. Circulation, 2020, 141(3):199-216. [39] Sorrentino A, Borghetti G, Zhou Y, et al. Hyperglycemia induces defective Ca2+ homeostasis in cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2017, 312(1):150-161. [40] Cesario D A, Brar R, Shivkumar K. Alterations in ion channel physiology in diabetic cardiomyopathy[J]. Endocrinol Metab Clin North Am,2006,35(3):601-610. [41] Zhou H, Yue Y, Wang J, et al. Melatonin therapy for diabetic cardiomyopathy:A mechanism involving Syk-mitochondrial complex I-SERCA pathway[J]. Cell Signal, 2018, 47:88-100. [42] Gui L, Zhu J, Lu X, et al. S-Nitrosylation of STIM1 by neuronal nitric oxide synthase inhibits store-operated Ca2+ entry[J]. J Mol Biol, 2018, 430(12):1773-1785. [43] Zhu-Mauldin X, Marsh S A, Zou L, et al. Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes[J]. J Biol Chem, 2012, 287(46):39094-39106. |
[1] | Wang Mengdi, Guo Yifan, Pang Yanyu, Liu Yufei, Zhao Wenjing. Research of Baoshentongluo formula-medicated serum on regulating mitophagy and reducing oxidative damage of podocytes induced by high glucose [J]. Journal of Capital Medical University, 2022, 43(5): 687-693. |
[2] | Zhang Jin, Wang Dong. The study of the mechanism of Xuduan promoting fracture healing based on network pharmacology and molecular docking [J]. Journal of Capital Medical University, 2022, 43(2): 275-283. |
[3] | Wu Yongle, Shang Hongwei, Sun Guangyong, Zhang Dong, Ding Huiguo. Optimization of immune cell isolation method from mouse adipose tissue and the role of subgroups in obese mice [J]. Journal of Capital Medical University, 2021, 42(4): 559-567. |
[4] | Liu Xin, Xu Youqing, Cui Chunying, Zhao Zhigang. Application of ApoC3 transgenic mice in acute pancreatitis with severe hypertrig-lyceridemia [J]. Journal of Capital Medical University, 2020, 41(3): 421-427. |
[5] | Hao Weijia, Yang Qiushi, Li Jingyi, Ma Yi, Lu Li, Xiong Jie, Li Yuhang, Xu Pingxiang, Chen Yi, Xue Ming, Li Xiaorong. Effects of propylthiouracil addition in high fat diet on blood lipid, body weight and body fat of rats [J]. Journal of Capital Medical University, 2018, 39(3): 385-392. |
[6] | Yang Yifan, Qin Yi, Xu Weizhe, Xu Pingxiang, Xue Ming. Pharmacokinetic comparison of Pyritinol in rats under normoxic and hypoxic condition [J]. Journal of Capital Medical University, 2017, 38(2): 232-237. |
[7] | Zhao Yuerong, Hou Biyu, Liu Chenge, Wang Xiaobo, Du Guanhua, Zhang Li, Guan Shuyu. Effect of epalrestat on liver injury in type 2 diabetic rats [J]. Journal of Capital Medical University, 2017, 38(2): 268-276. |
[8] | Li Xuelian, Yang Cuicui, Zhang Lan, Shi Jingshan. Regulatory mechanism of Cornel iridoid glycoside on protein phosphatase 2A catalytic subunit C phosphorylation [J]. Journal of Capital Medical University, 2016, 37(6): 777-783. |
[9] | Song Zihui, Zhang Huixia, Xiang Zongshang, Fan Mingyuan, Cai Yongming, Zhang Zongpeng. Antihyperglycemic effect of glargine injection in rat model of type 1 diabetes [J]. Journal of Capital Medical University, 2016, 37(5): 646-650. |
[10] | Nie Yangyang, Shi Zhiguo, Chen Bin, Yan Tao, Zheng Hui. Comparison of effects of tropisetron and ondansetron on preventing postoperative nausea and vomiting: a system review and Meta-analysis [J]. Journal of Capital Medical University, 2016, 37(3): 391-399. |
[11] | Ding Ning, He Yi, He Yumei, Wang Dong, Wang Ruizhong, Lu Jing, Dai Zhong, Ma Shuangcheng. The HPLC-DAD determination of puerarin and salvianolic acid B in Guanmaining tablets and its fingerprint chromatogram study [J]. Journal of Capital Medical University, 2015, 36(6): 958-963. |
[12] | Li Feiyang, Cui Chunying, Wang Yuji, Wu Jianhui. Preparation and antitumor activity of a novel liposome of doxorubicin [J]. Journal of Capital Medical University, 2015, 36(2): 157-160. |
[13] | Huang Ping, Cui Chunying, Wang Yuji, Wu Jianhui. Preparation and evaluation of a liposome of PEG and epirubicin [J]. Journal of Capital Medical University, 2015, 36(2): 166-172. |
[14] | Lu Xuemei, Wang Yuji, Wu Jianhui, Cui Chunying. Preparation and anti-tumor activity of a novel liposome-loaded drug [J]. Journal of Capital Medical University, 2015, 36(2): 172-177. |
[15] | Yan Yan, Wang Yuji, Wu Jianhui, Cui Chunying. Studies on anticancer activity of 17-AAG poly-butylcyanoacrylate nanoparticles [J]. Journal of Capital Medical University, 2015, 36(2): 178-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||