Journal of Capital Medical University ›› 2022, Vol. 43 ›› Issue (4): 505-520.doi: 10.3969/j.issn.1006-7795.2022.04.001
• Expert Comment • Next Articles
Zhou Yifan1, Jiang Huimin1, Wei Huimin2, Gu Yuhang3, Hu Wenbo4, Liu Lu4, Zhou Chen1,4*, Ji Xunming1,5*
Received:
2022-05-26
Online:
2022-08-21
Published:
2022-10-28
Contact:
*E-mail:chenzhou2013abc@163.com, jixm@ccmu.edu.cn
Supported by:
CLC Number:
Zhou Yifan, Jiang Huimin, Wei Huimin, Gu Yuhang, Hu Wenbo, Liu Lu, Zhou Chen, Ji Xunming. Strengthening research on the cerebral venous system improves the diagnosis and treatment of neurological diseases——anatomy, physiology, and clinical overview[J]. Journal of Capital Medical University, 2022, 43(4): 505-520.
[1] 芮德源, 朱雨岚, 陈立杰. 临床神经解剖学[M]. 2版. 北京: 人民卫生出版社, 2015. [2] Kilic T, Akakin A. Anatomy of cerebral veins and sinuses[J]. Front Neurol Neurosci, 2008, 23: 4-15. [3] Gong X Y, Higano S, Mugikura S, et al. Virtually peeling off the skull and scalp: a simple way of mapping the superficial cerebral veins on the brain surface[J]. Stereotact Funct Neurosurg, 2008, 86(6):345-350. [4] Rhoton A L Jr. The cerebral veins[J]. Neurosurgery, 2002, 51(4 Suppl):S159-S205. [5] Tomasi S O, Umana G E, Scalia G, et al. The superficial anastomosing veins of the human brain cortex: a microneurosurgical anatomical study[J]. Front Surg, 2021, 8: 817002. [6] Uddin M A, Haq T U, Rafique M Z. Cerebral venous system anatomy[J]. J Pak Med Assoc, 2006, 56(11):516-519. [7] Tatu L, Vuillier F, Moulin T. Chapter 13 anatomy of the circulation of the brain and spinal cord[J]. Handb Clin Neurol, 2009, 92: 247-281. [8] Suzuki Y, Ikeda H, Shimadu M, et al. Variations of the basal vein: identification using three-dimensional CT angiography[J]. AJNR Am J Neuroradiol, 2001, 22(4):670-676. [9] Rhoton A L Jr. RHOTON 颅脑解剖与手术入路[M]. 刘庆良主译. 北京: 中国科学技术出版社, 2010. [10] Wang P Y, Fang X C, Du R, et al. Principles of amino-acid-nucleotide interactions revealed by binding affinities between homogeneous oligopeptides and single-stranded DNA molecules[J]. Chembiochem, 2022, 23(8):e202200048. [11] Chanda A, Nanda A. Anatomical study of the orbitozygomatic transsellar-transcavernous-transclinoidal approach to the basilar artery bifurcation[J]. J Neurosurg, 2002, 97(1):151-160. [12] Yasuda A, Campero A, Martins C, et al. Microsurgical anatomy and approaches to the cavernous sinus[J]. Neurosurgery, 2005, 56(1 Suppl):S4-S27. [13] Rosenblum J S, Tunacao J M, Chandrashekhar V, et al. Tentorial venous anatomy: variation in the healthy population[J]. AJNR Am J Neuroradiol, 2020, 41(10):1825-1832. [14] Ayanzen R H, Bird C R, Keller P J, et al. Cerebral Mr venography: normal anatomy and potential diagnostic pitfalls[J]. AJNR Am J Neuroradiol, 2000, 21(1):74-78. [15] Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans[J]. Brain Res Brain Res Rev, 2004, 46(3):243-260. [16] Ardeshiri A, Ardeshiri A, Tonn J C, et al. Microsurgical anatomy of the lateral mesencephalic vein and its meaning for the deep venous outflow of the brain[J]. Neurosurg Rev, 2006, 29(2):154-158. [17] Andeweg J. Consequences of the anatomy of deep venous outflow from the brain[J]. Neuroradiology, 1999, 41(4):233-241. [18] Tsutsumi S, Ono H, Ishii H. Bridging veins of the cerebellum: a magnetic resonance imaging study[J]. Surg Radiol Anat, 2021, 43(3):437-444. [19] Schmidek H H, Auer L M, Kapp J P. The cerebral venous system[J]. Neurosurgery, 1985, 17(4):663-678. [20] Oka K, Rhoton A L Jr, Barry M, et al. Microsurgical anatomy of the superficial veins of the cerebrum[J]. Neurosurgery, 1985, 17(5):711-748. [21] Takahashi A, Ushiki T, Abe K, et al. Cytoarchitecture of periendothelial cells in human cerebral venous vessels as compared with the scalp vein. A scanning electron microscopic study[J]. Arch Histol Cytol, 1994, 57(4):331-339. [22] Hill J, Rom S, Ramirez S H, et al. Emerging roles of pericytes in the regulation of the neurovascular unit in health and disease[J]. J Neuroimmune Pharmacol, 2014, 9(5):591-605. [23] Ushiwata I, Ushiki T. Cytoarchitecture of the smooth muscles and pericytes of rat cerebral blood vessels. A scanning electron microscopic study[J]. J Neurosurg, 1990, 73(1):82-90. [24] Kulik T, Kusano Y, Aronhime S, et al. Regulation of cerebral vasculature in normal and ischemic brain[J]. Neuropharmacology, 2008, 55(3):281-288. [25] Si Z, Luan L, Kong D, et al. MRI-based investigation on outflow segment of cerebral venous system under increased ICP condition[J]. Eur J Med Res, 2008, 13(3):121-126. [26] Badaut J, Bix G J. Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae[J]. Transl Stroke Res, 2014, 5(3):394-406. [27] Hufnagle J J, Tadi P. Neuroanatomy, brain veins[M]. Treasure Island (FL):StatPearls Publishing, 2022. [28] Zhang J H, Badaut J, Tang J P, et al. The vascular neural network-a new paradigm in stroke pathophysiology[J]. Nat Rev Neurol, 2012, 8(12):711-716. [29] Tong L S, Guo Z N, Ou Y B, et al. Cerebral venous collaterals: a new fort for fighting ischemic stroke?[J]. Prog Neurobiol, 2018, 163/164: 172-193. [30] Gustafsson O, Rossitti S. Intracranial pressure is a fraction of arterial blood pressure[J]. Eur J Neurol, 1995, 2(1):31-37. [31] Oberdier M T, Antaki J F, Kharlamov A, et al. Closed cranial window rodent model for investigating hemodynamic response to elevated intracranial pressure[J]. Animal Model Exp Med, 2021, 4(4):391-397. [32] DE Simone R, Ranieri A, Bonavita V. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension[J]. Panminerva Med, 2017, 59(1):76-89. [33] Chen J, Wang X M, Luan L M, et al. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension[J]. Chin Med J, 2012, 125(7):1303-1309. [34] Wilson M H. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure[J]. J Cereb Blood Flow Metab, 2016, 36(8):1338-1350. [35] Murtha L A, McLeod D D, Pepperall D, et al. Intracranial pressure elevation after ischemic stroke in rats: cerebral edema is not the only cause, and short-duration mild hypothermia is a highly effective preventive therapy[J]. J Cereb Blood Flow Metab, 2015, 35(12):2109. [36] Edvinsson L, McCulloch J, Uddman R. Feline cerebral veins and arteries: comparison of autonomic innervation and vasomotor responses[J]. J Physiol, 1982, 325: 161-173. [37] Edvinsson L, Högestätt E D, Uddman R, et al. Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity[J]. J Cereb Blood Flow Metab, 1983, 3(2):226-230. [38] Auer L M, Edvinsson L, Johansson B B. Effect of sympathetic nerve stimulation and adrenoceptor blockade on pial arterial and venous calibre and on intracranial pressure in the cat[J]. Acta Physiol Scand, 1983, 119(3):213-217. [39] Mayhan W G, Werber A H, Heistad D D. Protection of cerebral vessels by sympathetic nerves and vascular hypertrophy[J]. Circulation, 1987, 75(1 Pt 2):I107-I112. [40] Min K J, Yoon S H, Kang J K. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy[J]. Med Hypotheses, 2011, 76(6):884-886. [41] Ambarki K, Baledent O, Kongolo G, et al. A new lumped-parameter model of cerebrospinal hydrodynamics during the cardiac cycle in healthy volunteers[J]. IEEE Trans Biomed Eng, 2007, 54(3):483-491. [42] Beggs C B. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis[J]. BMC Med, 2013, 11: 142. [43] Bateman G A, Levi C R, Schofield P, et al. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia[J]. Neuroradiology, 2008, 50(6):491-497. [44] Schaller B, Graf R, Sanada Y, et al. Hemodynamic changes after occlusion of the posterior superior sagittal sinus: an experimental PET study in Cats[J]. AJNR Am J Neuroradiol, 2003, 24(9):1876-1880. [45] Guibert R, Fonta C, Risser L, et al. Coupling and robustness of intra-cortical vascular territories[J]. Neuroimage, 2012, 62(1):408-417. [46] Harel N, Bolan P J, Turner R, et al. Recent advances in high-resolution MR application and its implications for neurovascular coupling research[J]. Front Neuroenergetics, 2010, 2: 130. [47] Profaci C P, Munji R N, Pulido R S, et al. The blood-brain barrier in health and disease: Important unanswered questions[J]. J Exp Med, 2020, 217(4):e20190062. [48] Vanlandewijck M, He L Q, Mäe M A, et al. A molecular atlas of cell types and zonation in the brain vasculature[J]. Nature, 2018, 554(7693):475-480. [49] Kucharz K, Kristensen K, Johnsen K B, et al. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles[J]. Nat Commun, 2021, 12(1):4121. [50] Macdonald J A, Murugesan N, Pachter J S. Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature[J]. J Neurosci Res, 2010, 88(7):1457-1474. [51] Saubaméa B, Cochois-Guégan V, Cisternino S, et al. Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression[J]. J Cereb Blood Flow Metab, 2012, 32(1):81-92. [52] Alexander J S, Prouty L, Tsunoda I, et al. Venous endothelial injury in central nervous system diseases[J]. BMC Med, 2013, 11(1):219. [53] Ishikawa M, Cooper D, Arumugam T V, et al. Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion[J]. J Cereb Blood Flow Metab, 2004, 24(8):907-915. [54] Ding W Y, Gupta D, Lip G Y H. Atrial fibrillation and the prothrombotic state: revisiting Virchow's triad in 2020[J]. Heart, 2020, 106(19):1463-1468. [55] Housholder G T. The role of the endothelium in in vivo anticoagulation[J]. J Oral Maxillofac Surg, 1991, 49(5):507-511. [56] Langen U H, Ayloo S, Gu C H. Development and cell biology of the blood-brain barrier[J]. Annu Rev Cell Dev Biol, 2019, 35: 591-613. [57] Prescott S M, McIntyre T M, Zimmerman G A. The role of platelet-activating factor in endothelial cells[J]. Thromb Haemost, 1990, 64(1):99-103. [58] Fortini F, Vieceli Dalla Sega F, Marracino L, et al. Well-known and novel players in endothelial dysfunction: updates on a notch(ed) landscape[J]. Biomedicines, 2021, 9(8):997. [59] Grulich-Henn J, Müller-Berghaus G. The role of vascular endothelial cells in the regulation of fibrinolysis[J]. Z Kardiol, 1989, 78(Suppl 6):S25-S29. [60] Félétou M, Vanhoutte P M. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture)[J]. Am J Physiol Heart Circ Physiol, 2006, 291(3):H985-1002. [61] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国颅内静脉血栓形成诊断和治疗指南2019[J]. 中华神经科杂志, 2020, 53(9):648-663. [62] Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion[J]. Neurology, 2001, 56(12):1746-1748. [63] Farb R I, Vanek I, Scott J N, et al. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis[J]. Neurology, 2003, 60(9):1418-1424. [64] Markey K A, Mollan S P, Jensen R H, et al. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions[J]. Lancet Neurol, 2016, 15(1):78-91. [65] Ball A K, Clarke C E. Idiopathic intracranial hypertension[J]. Lancet Neurol, 2006, 5(5):433-442. [66] Giridharan N, Patel S K, Ojugbeli A, et al. Understanding the complex pathophysiology of idiopathic intracranial hypertension and the evolving role of venous sinus stenting: a comprehensive review of the literature[J]. Neurosurg Focus, 2018, 45(1):E10. [67] Pickard J D, Czosnyka Z, Czosnyka M, et al. Coupling of sagittal sinus pressure and cerebrospinal fluid pressure in idiopathic intracranial hypertension—a preliminary report[J]. Acta Neurochir Suppl, 2008, 102: 283-285. [68] Duman T, Uluduz D, Midi I, et al. A multicenter study of 1144 patients with cerebral venous thrombosis: the VENOST study[J]. J Stroke Cerebrovasc Dis, 2017, 26(8):1848-1857. [69] Proulx S T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics[J]. Cell Mol Life Sci, 2021, 78(6):2429-2457. [70] Chen L, Elias G, Yostos M P, et al. Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption[J]. Neuroradiology, 2015, 57(2):139-147. [71] Zakharov A, Papaiconomou C, Koh L, et al. Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep[J]. Microvasc Res, 2004, 67(1):96-104. [72] Julow J, Ishii M, Iwabuchi T. Arachnoid villi affected by subarachnoid pressure and haemorrhage. Scanning electron microscopic study in the dog[J]. Acta Neurochir, 1979, 51(1/2):63-72. [73] Yoshida S, Ogawa K, Fukushima T. The morphological study of cerebrospinal fluid drainage at monkey arachnoid granulations[J]. No To Shinkei, 1994, 46(6):549-554. [74] Ludemann J P, Poskitt K, Singhal A. Intracranial hypertension secondary to sigmoid sinus compression by group A streptococcal epidural abscess[J]. J Laryngol Otol, 2010, 124(1):93-95. [75] Rohr A, Bindeballe J, Riedel C, et al. The entire dural sinus tree is compressed in patients with idiopathic intracranial hypertension: a longitudinal, volumetric magnetic resonance imaging study[J]. Neuroradiology, 2012, 54(1):25-33. [76] Fuentes S, Metellus P, Levrier O, et al. Depressed skull fracture overlying the superior sagittal sinus causing benign intracranial hypertension. Description of two cases and review of the literature[J]. Br J Neurosurg, 2005, 19(5):438-442. [77] Engelhardt B, Vajkoczy P, Weller R O. The movers and shapers in immune privilege of the CNS[J]. Nat Immunol, 2017, 18(2):123-131. [78] Mapunda J A, Tibar H, Regragui W, et al. How does the immune system enter the brain?[J]. Front Immunol, 2022, 13: 805657. [79] Bartholomäus I, Kawakami N, Odoardi F, et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions[J]. Nature, 2009, 462(7269):94-98. [80] Kawakami N, Flügel A. Knocking at the brain's door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures[J]. Semin Immunopathol, 2010, 32(3):275-287. [81] Ransohoff R M, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system[J]. Nat Rev Immunol, 2012, 12(9):623-635. [82] Lassmann H. Multiple sclerosis pathology[J]. Cold Spring Harb Perspect Med, 2018, 8(3):a028936. [83] Engelhardt B, Ransohoff R M. Capture, crawl, cross: the T cell code to breach the blood-brain barriers[J]. Trends Immunol, 2012, 33(12):579-589. [84] Vajkoczy P, Laschinger M, Engelhardt B. Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels[J]. J Clin Invest, 2001, 108(4):557-565. [85] Louveau A, Smirnov I, Keyes T J, et al. Structural and functional features of central nervous system lymphatic vessels[J]. Nature, 2015, 523(7560):337-341. [86] Visanji N P, Lang A E, Munoz D G. Lymphatic vasculature in human dural superior sagittal sinus: implications for neurodegenerative proteinopathies[J]. Neurosci Lett, 2018, 665: 18-21. [87] Absinta M, Ha S K, Nair G, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI[J]. Elife, 2017, 6: e29738. [88] Ahn J H, Cho H, Kim J H, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid[J]. Nature, 2019, 572(7767):62-66. [89] Da Mesquita S, Louveau A, Vaccari A, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease[J]. Nature, 2018, 560(7717):185-191. [90] Hu X T, Deng Q P, Ma L, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity[J]. Cell Res, 2020, 30(3):229-243. [91] Chen F, Xie X, Wang L. Research progress on intracranial lymphatic circulation and its involvement in disorders[J]. Front Neurol, 2022, 13: 865714. [92] Bolte A C, Dutta A B, Hurt M E, et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis[J]. Nat Commun, 2020, 11(1):4524. [93] Sallusto F, Lenig D, Förster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions[J]. Nature, 1999, 401(6754):708-712. [94] Rustenhoven J, Drieu A, Mamuladze T, et al. Functional characterization of the dural sinuses as a neuroimmune interface[J]. Cell, 2021, 184(4):1000-1016.e27. [95] Schwarzmaier S M, Kim S W, Trabold R, et al. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice[J]. J Neurotrauma, 2010, 27(1):121-130. [96] Jickling G C, Liu D Z, Ander B P, et al. Targeting neutrophils in ischemic stroke: translational insights from experimental studies[J]. J Cereb Blood Flow Metab, 2015, 35(6):888-901. [97] Ishikawa M, Kusaka G, Yamaguchi N, et al. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage[J]. Neurosurgery, 2009, 64(3):546-553. [98] Pang C C. Autonomic control of the venous system in health and disease: effects of drugs[J]. Pharmacol Ther, 2001, 90(2/3):179-230. [99] Pranevicius M, Pranevicius O. Cerebral venous steal: blood flow diversion with increased tissue pressure[J]. Neurosurgery, 2002, 51(5):1267-1273. [100] Pranevicius O, Pranevicius M, Pranevicius H, et al. Transition to collateral flow after arterial occlusion predisposes to cerebral venous steal[J]. Stroke, 2012, 43(2):575-579. [101] Yu X, Yuan L, Jackson A, et al. Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke[J]. AJNR Am J Neuroradiol, 2016, 37(3):423-429. [102] Mucke J, Möhlenbruch M, Kickingereder P, et al. Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome[J]. PLoS One, 2015, 10(4):e0120801. [103] Bhaskar S, Bivard A, Parsons M, et al. Delay of late-venous phase cortical vein filling in acute ischemic stroke patients: associations with collateral status[J]. J Cereb Blood Flow Metab, 2017, 37(2):671-682. [104] Lin J X, Cheng Z Y, Shi Y Y, et al. Evaluating the velocity and extent of cortical venous filling in patients with severe middle cerebral artery stenosis or occlusion[J]. Front Neurol, 2021, 12: 610658. [105] Sasaki M, Honmou O, Radtke C, et al. Development of a middle cerebral artery occlusion model in the nonhuman primate and a safety study of i.v. infusion of human mesenchymal stem cells[J]. PLoS One, 2011, 6(10):e26577. [106] Hoffman H, Ziechmann R, Swarnkar A, et al. Cortical vein opacification for risk stratification in anterior circulation endovascular thrombectomy[J]. J Stroke Cerebrovasc Dis, 2019, 28(6):1710-1717. [107] Zhang S, Lai Y X, Ding X F, et al. Absent filling of ipsilateral superficial middle cerebral vein is associated with poor outcome after reperfusion therapy[J]. Stroke, 2017, 48(4):907-914. [108] Jansen I G H, Van Vuuren A B, Van Zwam W H, et al. Absence of cortical vein opacification is associated with lack of intra-arterial therapy benefit in stroke[J]. Radiology, 2018, 286(2):643-650. [109] Parthasarathy R, Kate M, Rempel J L, et al. Prognostic evaluation based on cortical vein score difference in stroke[J]. Stroke, 2013, 44(10):2748-2754. [110] Van Den Wijngaard I R, Wermer M J H, Boiten J, et al. Cortical venous filling on dynamic computed tomographic angiography: a novel predictor of clinical outcome in patients with acute middle cerebral artery stroke[J]. Stroke, 2016, 47(3):762-767. [111] Faizy T D, Kabiri R, Christensen S, et al. Association of venous outflow profiles and successful vessel reperfusion after thrombectomy[J]. Neurology, 2021, 96(24):e2903-e2911. [112] Xia H, Sun H, He S, et al. Absent cortical venous filling is associated with aggravated brain edema in acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2021, 42(6):1023-1029. [113] Faizy T D, Kabiri R Z, Christensen S, et al. Venous outflow profiles are linked to cerebral edema formation at noncontrast head CT after treatment in acute ischemic stroke regardless of collateral vessel status at CT angiography[J]. Radiology, 2021, 299(3):682-690. [114] Faizy T D, Kabiri R Z, Christensen S, et al. Favorable venous outflow profiles correlate with favorable tissue-level collaterals and clinical outcome[J]. Stroke, 2021, 52(5):1761-1767. [115] Zhang J H, Obenaus A, Liebeskind D S, et al. Recanalization, reperfusion, and recirculation in stroke[J]. J Cereb Blood Flow Metab, 2017, 37(12):3818-3823. [116] Yu W G, Rives J, Welch B, et al. Hypoplasia or occlusion of the ipsilateral cranial venous drainage is associated with early fatal edema of middle cerebral artery infarction[J]. Stroke, 2009, 40(12):3736-3739. [117] Geraldes R, Sousa P R, Fonseca A C, et al. Nontraumatic convexity subarachnoid hemorrhage: different etiologies and outcomes[J]. J Stroke Cerebrovasc Dis, 2014, 23(1):e23-e30. [118] Panda S, Prashantha D K, Shankar S R, et al. Localized convexity subarachnoid haemorrhage-a sign of early cerebral venous sinus thrombosis[J]. Eur J Neurol, 2010, 17(10):1249-1258. [119] Fu F W, Rao J, Zheng Y Y, et al. Perimesencephalic nonaneurysmal subarachnoid hemorrhage caused by transverse sinus thrombosis: a case report and review of literature[J]. Medicine, 2017, 96(33):e7374. [120] Azeemuddin M, Awais M, Mubarak F, et al. Prevalence of subarachnoid haemorrhage among patients with cranial venous sinus thrombosis in the presence and absence of venous infarcts[J]. Neuroradiol J, 2018, 31(5):496-503. [121] Yokota H, Eguchi T, Nobayashi M, et al. Persistent intracranial hypertension caused by superior sagittal sinus stenosis following depressed skull fracture. Case report and review of the literature[J]. J Neurosurg, 2006, 104(5):849-852. [122] Higgins J N P, Burnet N G, Schwindack C F, et al. Severe brain edema caused by a meningioma obstructing cerebral venous outflow and treated with venous sinus stenting. Case report[J]. J Neurosurg, 2008, 108(2):372-376. [123] Kim A W, Trobe J D. Syndrome simulating pseudotumor cerebri caused by partial transverse venous sinus obstruction in metastatic prostate cancer[J]. Am J Ophthalmol, 2000, 129(2):254-256. [124] Strydom M A, Briers N, Bosman M C, et al. The anatomical basis of venographic filling defects of the transverse sinus[J]. Clin Anat, 2010, 23(2):153-159. [125] Li K, Ren M, Meng R, et al. Efficacy of stenting in patients with cerebral venous sinus thrombosis-related cerebral venous sinus stenosis[J]. J Neurointerv Surg, 2019, 11(3):307-312. [126] King J O, Mitchell P J, Thomson K R, et al. Cerebral venography and manometry in idiopathic intracranial hypertension[J]. Neurology, 1995, 45(12):2224-2228. [127] Puffer R C, Mustafa W, Lanzino G. Venous sinus stenting for idiopathic intracranial hypertension: a review of the literature[J]. J Neurointerv Surg, 2013, 5(5):483-486. [128] Schaller B, Graf R. Cerebral venous infarction: the pathophysiological concept[J]. Cerebrovasc Dis, 2004, 18(3):179-188. [129] Beard D J, McLeod D D, Logan C L, et al. Intracranial pressure elevation reduces flow through collateral vessels and the penetrating arterioles they supply. A possible explanation for ‘collateral failure’ and infarct expansion after ischemic stroke[J]. J Cereb Blood Flow Metab, 2015, 35(5):861-872. [130] Muir K W, Macrae I M. Neuroimaging as a selection tool and endpoint in clinical and pre-clinical trials[J]. Transl Stroke Res, 2016, 7(5):368-377. [131] Zivadinov R, Chung C P. Potential involvement of the extracranial venous system in central nervous system disorders and aging[J]. BMC Med, 2013, 11: 260. [132] Beggs C B, Magnano C, Shepherd S J, et al. Aqueductal cerebrospinal fluid pulsatility in healthy individuals is affected by impaired cerebral venous outflow[J]. J Magn Reson Imaging, 2014, 40(5):1215-1222. [133] Beggs C. The venous connection: the role of veins in neurodegenerative disease[M]//Minagar A, Alexander J. Inflammatory disorders of the nervous system. Cham: Humana Press, 2017: 259-273. [134] Müller L O, Toro E F, Haacke E M, et al. Impact of CCSVI on cerebral haemodynamics: a mathematical study using MRI angiographic and flow data[J]. Phlebology, 2016, 31(5):305-324. [135] Chung C P, Wang P N, Wu Y H, et al. More severe white matter changes in the elderly with jugular venous reflux[J]. Ann Neurol, 2011, 69(3):553-559. [136] Bai C B, Xu Y M, Zhou D, et al. The comparative analysis of non-thrombotic internal jugular vein stenosis and cerebral venous sinus stenosis[J]. J Thromb Thrombolysis, 2019, 48(1):61-67. [137] Chung C P, Hsu H Y, Chao A C, et al. Jugular venous reflux affects ocular venous system in transient monocular blindness[J]. Cerebrovasc Dis, 2010, 29(2):122-129. [138] Lochner P, Nedelmann M, Kaps M, et al. Jugular valve incompetence in transient global amnesia. A problem revisited[J]. J Neuroimaging, 2014, 24(5):479-483. [139] Schreiber S J, Doepp F, Klingebiel R, et al. Internal jugular vein valve incompetence and intracranial venous anatomy in transient global amnesia[J]. J Neurol Neurosurg Psychiatry, 2005, 76(4):509-513. [140] 韩珂, 邢英琦, 杨弋, 等. 头颈静脉回流障碍是短暂性全面遗忘症发病机制的新证据[C]//中华医学峰会暨中华医学会神经病学分会第八届全国中青年神经病学学术会议论文汇编, 2015: 62. [141] Han K, Hu H H, Chao A C, et al. Transient global amnesia linked to impairment of brain venous drainage: an ultrasound investigation[J]. Front Neurol, 2019, 10: 67. [142] Cheng C Y, Chang F C, Chao A C, et al. Internal jugular venous abnormalities in transient monocular blindness[J]. BMC Neurol, 2013, 13: 94. [143] Doepp F, Bähr D, John M, et al. Internal jugular vein valve incompetence in COPD and primary pulmonary hypertension[J]. J Clin Ultrasound, 2008, 36(8):480-484. [144] Pereira L, Campos Costa E, Nunes T, et al. Dynamics of a haemodynamic headache: a case report and literature review of headache secondary to flow inversion of the internal jugular vein[J]. Cephalalgia, 2016, 36(14):1370-1378. [145] Liu H X, Cao X Y, Zhang M C, et al. A case report of cough headache with transient elevation of intracranial pressure and bilateral internal jugular vein valve incompetence: a primary or secondary headache?[J]. Cephalalgia, 2018, 38(3):600-603. [146] Beggs C B, Giaquinta A, Veroux M, et al. Mid-term sustained relief from headaches after balloon angioplasty of the internal jugular veins in patients with multiple sclerosis[J]. PLoS One, 2018, 13(1):e0191534. [147] 杨晓燕, 闫峰, 孟然, 等. 应关注颈内静脉回流不良综合征[J]. 华西医学, 2018, 33(6):644-650. [148] Zhou D, Ding J Y, Asmaro K, et al. Clinical characteristics and neuroimaging findings in internal jugular venous outflow disturbance[J]. Thromb Haemost, 2019, 119(2):308-318. [149] Zhou D, Meng R, Zhang X, et al. Intracranial hypertension induced by internal jugular vein stenosis can be resolved by stenting[J]. Eur J Neurol, 2018, 25(2):365-e13. [150] Vega-Moreno D A, Aviles-Aguilar A, De la-Torre A I, et al. Intracranial hypertension syndrome secondary to internal jugular vein thrombosis due to miliary cervical tuberculosis: a case report[J]. Surg Neurol Int, 2021, 12: 32. [151] Liess B D, Lollar K W, Christiansen S G, et al. Pulsatile tinnitus: a harbinger of a greater ill?[J]. Head Neck, 2009, 31(2):269-273. [152] Li B M, Shi Y B, Cao X Y. Angioplasty and stenting for intractable pulsatile tinnitus caused by dural venous sinus stenosis: a case series report[J]. Otol Neurotol, 2014, 35(2):366-370. [153] Russell E J, De Michaelis B J, Wiet R, et al. Objective pulse-synchronous “essential” tinnitus due to narrowing of the transverse dural venous sinus[J]. Int Tinnitus J, 1995, 1(2):127-137. [154] Eisenman D J, Raghavan P, Hertzano R, et al. Evaluation and treatment of pulsatile tinnitus associated with sigmoid sinus wall anomalies[J]. Laryngoscope, 2018, 128(Suppl 2):S1-S13. [155] Sundararajan S H, Ramos A D, Kishore V, et al. Dural venous sinus stenosis: why distinguishing Intrinsic-versus-extrinsic stenosis matters[J]. AJNR Am J Neuroradiol, 2021, 42(2):288-296. [156] Radvany M G, Solomon D, Nijjar S, et al. Visual and neurological outcomes following endovascular stenting for pseudotumor cerebri associated with transverse sinus stenosis[J]. J Neuroophthalmol, 2013, 33(2):117-122. [157] Lenck S, Vallée F, Labeyrie M A, et al. Stenting of the lateral sinus in idiopathic intracranial hypertension according to the type of stenosis[J]. Neurosurgery, 2017, 80(3):393-400. [158] Yang X X, Wu F, Liu Y H, et al. Predictors of successful endovascular treatment in severe cerebral venous sinus thrombosis[J]. Ann Clin Transl Neurol, 2019, 6(4):755-761. [159] Dong C, Zhao P F, Yang J G, et al. Incidence of vascular anomalies and variants associated with unilateral venous pulsatile tinnitus in 242 patients based on dual-phase contrast-enhanced computed tomography[J]. Chin Med J, 2015, 128(5):581-585. [160] Dinkin M, Oliveira C. Men are from mars, idiopathic intracranial hypertension is from venous: the role of venous sinus stenosis and stenting in idiopathic intracranial hypertension[J]. Semin Neurol, 2019, 39(6):692-703. [161] Satti S R, Leishangthem L, Spiotta A, et al. Dural venous sinus stenting for medically and surgically refractory idiopathic intracranial hypertension[J]. Interv Neuroradiol, 2017, 23(2):186-193. [162] Morrone C D, Bishay J, McLaurin J. Potential role of venular amyloid in Alzheimer's disease pathogenesis[J]. Int J Mol Sci, 2020, 21(6):1985. [163] Joo I L, Lai A Y, Bazzigaluppi P, et al. Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease[J]. Sci Rep, 2017, 7: 46427. [164] Thal D R, Ghebremedhin E, Rüb U, et al. Two types of sporadic cerebral amyloid angiopathy[J]. J Neuropathol Exp Neurol, 2002, 61(3):282-293. [165] Keith J, Gao F Q, Noor R, et al. Collagenosis of the deep medullary veins: an underrecognized pathologic correlate of white matter hyperintensities and periventricular infarction?[J]. J Neuropathol Exp Neurol, 2017, 76(4):299-312. [166] Moody D M, Brown W R, Challa V R, et al. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer's disease[J]. Ann N Y Acad Sci, 1997, 826: 103-116. [167] Ortner M, Hauser C, Schmaderer C, et al. Decreased vascular pulsatility in Alzheimer's disease dementia measured by transcranial color-coded duplex sonography[J]. Neuropsychiatr Dis Treat, 2019, 15: 3487-3499. [168] Lee Y, Ko J, Choi Y E, et al. Areas of white matter hyperintensities and motor symptoms of Parkinson disease[J]. Neurology, 2020, 95(3):e291-e298. [169] Liu M J, Xu H B, Wang Y H, et al. Patterns of chronic venous insufficiency in the dural sinuses and extracranial draining veins and their relationship with white matter hyperintensities for patients with Parkinson's disease[J]. J Vasc Surg, 2015, 61(6):1511-1520.e1. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||