[1] 程浩, 潘静, 姚甜甜, 等. 全身炎症反应导致肝损伤的临床特点和机制研究现状[J]. 国际病毒学杂志, 2019, 26(5): 354-357.
[2] 齐婧姝, 胡旭东, 刘成海. 肝纤维化的逆转机制[J]. 中华肝脏病杂志, 2022, 30(6): 577-582.
[3] Vanheule E, Geerts A M, Van Huysse J, et al. An intravital microscopic study of the hepatic microcirculation in cirrhotic mice models: relationship between fibrosis and angiogenesis[J]. Int J Exp Pathol, 2008, 89(6): 419-432.
[4] Yang L, Yue S, Yang L, et al. Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis[J]. J Hepatol, 2013, 59(1): 114-123.
[5] Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis[J]. Cell Tissue Res, 2003, 314(1): 15-23.
[6] Grant R I, Hartmann D A, Underly R G, et al. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex[J]. J Cereb Blood Flow Metab, 2019, 39(3): 411-425.
[7] Hellerbrand C. Hepatic stellate cells—the pericytes in the liver[J]. Pflugers Arch, 2013, 465(6): 775-778.
[8] Xu J, Gong T, Heng B C, et al. A systematic review: differentiation of stem cells into functional pericytes[J]. FASEB J, 2017, 31(5): 1775-1786.
[9] Yang L, Dong C B, Yang J J, et al. MicroRNA-26b-5p inhibits mouse liver fibrogenesis and angiogenesis by targeting PDGF Receptor-Beta[J]. Mol Ther Nucleic Acids, 2019, 16: 206-217.
[10] Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs[J]. Cell Stem Cell, 2008, 3(3): 301-313.
[11] Marson R F, Regner A P, Meirelles L D A S. Mesenchymal “stem” cells, or facilitators for the development of regenerative macrophages? Pericytes at the interface of wound healing[J]. Front Cell Dev Biol, 2023, 11: 1148121.
[12] Globig P, Madurawala R, Römer W R, et al. Mg-based materials diminish tumor spreading and cancer metastases[J]. Bioact Mater, 2023, 19: 594-610.
[13] Nadeem T, Bogue W, Bigit B, et al. Deficiency of notch signaling in pericytes results in arteriovenous malformations[J]. JCI Insight, 2020, 5(21): e125940.
[14] Besnier M, Shantikumar S, Anwar M, et al. miR-15a/-16 inhibit angiogenesis by targeting the tie2 coding sequence: therapeutic potential of a miR-15a/16 decoy system in limb ischemia[J]. Mol Ther Nucleic Acids, 2019, 17: 49-62.
[15] Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions[J]. Circ Res, 2005, 97(6): 512-523.
[16] Amsellem V, Dryden N H, Martinelli R, et al. ICAM-2 regulates vascular permeability and N-cadherin localization through ezrin-radixin-moesin (ERM) proteins and Rac-1 signalling[J]. Cell Commun Signal, 2014, 12: 12.
[17] Steege T E J, Bakker E R M. The role of R-spondin proteins in cancer biology[J]. Oncogene, 2021, 40(47): 6469-6478.
[18] Nagano K N H. R-spondin signaling as a pivotal regulator of tissue development and homeostasis[J]. Jpn Dent Sci Rev, 2019, 55(1): 80-87.
[19] Mesci A, Lucien F, Huang X Y, et al. RSPO3 is a prognostic biomarker and mediator of invasiveness in prostate cancer[J]. J Transl Med, 2019, 17(1): 125.
[20] Scholz B, Korn C, Wojtarowicz J, et al. Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca(2+)/NFAT signaling[J]. Dev Cell, 2016, 36(1): 79-93.
[21] Sweeney M, Foldes G. It takes two: endothelial-perivascular cell cross-talk in vascular development and disease[J]. Front Cardiovasc Med, 2018, 5: 154.
[22] Gerhardt H, Wolburg H, Redies C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken[J]. Dev Dyn, 2000, 218(3): 472-479.
[23] Werner A C, Weckbach L T, Salvermoser M, et al. coronin 1B controls endothelial actin dynamics at cell-cell junctions and is required for endothelial network assembly[J]. Front Cell Dev Biol, 2020, 8: 708.
[24] Kruse K, Lee Q S, Sun Y, et al. N-cadherin signaling via trio assembles adherens junctions to restrict endothelial permeability[J]. J Cell Biol, 2019, 218(1): 299-316.
[25] Bonney S K, Coelho-Santos V, Huang S F, et al. Public volume electron microscopy data: an essential resource to study the brain microvasculature[J]. Front Cell Dev Biol, 2022, 10: 849469.
[26] Jin Y R, Han X H, Nishimori K, et al. Canonical WNT/β-catenin signaling activated by WNT9b and RSPO2 cooperation regulates facial morphogenesis in mice[J]. Front Cell Dev Biol, 2020, 8: 264.
[27] Annunziato S, Sun T A, Tchorz J S. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease[J]. Hepatology, 2022, 76(3): 888-899.
[28] 王瑞峰, 张昊驹, 戴宜武, 等. R-脊椎蛋白3对小鼠神经干细胞增殖及Wnt/β-catenin通路的影响[J]. 中华神经医学杂志, 2018, 17(4): 344-348.
[29] Wootten D, Christopoulos A, Marti-Solano M, et al. Mechanisms of signalling and biased agonism in G protein-coupled receptors[J]. Nat Rev Mol Cell Biol, 2018, 19(10): 638-653.
|