[1] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
[2] 汪昊, 陈东, 万涛, 等. 深度学习神经网络在非炎性主动脉中膜变性病理图像分类中的应用[J]. 中华病理学杂志, 2021, 50(6): 620-625.
[3] 林静敏, 魏松林. 基于深度学习的眼底图像辅助诊断系统设计[J]. 安徽电子信息职业技术学院学报, 2022, 21(6): 25-31.
[4] Chen X, Guo X M, Zheng Y N, et al. Heart function grading evaluation based on heart sounds and convolutional neural networks[J]. Phys Eng Sci Med, 2023, 46(1): 279-288.
[5] Karani N, Erdil E, Chaitanya K, et al. Test-time adaptable neural networks for robust medical image segmentation[J]. Med Image Anal, 2021, 68: 101907.
[6] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[7] Zhou L C, Gu X D. Embedding topological features into convolutional neural network salient object detection[J]. Neural Netw, 2020, 121: 308-318.
[8] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems- Volume 1. Lake Tahoe, Nevada, Red Hook, NY, USA: Curran Associates Inc., 2012: 1097-1105.
[9] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[DB/OL]. (2014-09-04)[2023-06-03]. https://arxiv.org/abs/1409.1556.
[10] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning- Volume 37. Lille, France: JMLR, 2015: 448-456.
[11] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 770-778.
[12] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 2261-2269.
[13] Lin M B, Ji R R, Li S J, et al. Network pruning using adaptive exemplar filters[J]. IEEE Trans Neural Netw Learn Syst, 2022, 33(12): 7357-7366.
[14] Martinho-Corbishley D, Nixon M S, Carter J N. Super-fine attributes with crowd prototyping[J]. IEEE Trans Pattern Anal Mach Intell, 2019, 41(6): 1486-1500.
[15] Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 1577-1586.
[16] Wang F H, Liang Y B, Zhang F, et al. Prevalence of diabetic retinopathy in rural China: the Handan eye study[J]. Ophthalmology, 2009, 116(3): 461-467.
[17] Liang Y B, Friedman D S, Zhou Q, et al. Prevalence of primary open angle glaucoma in a rural adult Chinese population: the Handan eye study[J]. Invest Ophthalmol Vis Sci, 2011, 52(11): 8250-8257.
[18] Cao K, Hao J, Zhang Y, et al. Design, methodology, and preliminary results of the follow-up of a population-based cohort study in rural area of northern China: Handan eye study[J]. Chin Med J (Engl), 2019, 132(18): 2157-2167.
[19] 黄坚, 余卓, 徐璐, 等. 基于卷积神经网络的儿童病毒性脑炎磁共振影像分类与早期诊断研究[J]. 磁共振成像, 2023, 14(1): 54-60.
[20] 吴树才, 王新举, 纪俊雨, 等. 基于深度学习卷积神经网络的肺结核CT诊断模型效能初探[J]. 中华结核和呼吸杂志, 2021, 44(5): 450-455.
[21] 雷伟, 李智伟, 芮东升, 等. 卷积神经网络在急性髓系白血病流式细胞术自动诊断中的应用[J]. 安徽医科大学学报, 2023, 58(7): 1189-1193.
[22] 尹爱桃, 陆永萍, 赵易凡, 等. 卷积神经网络诊断甲状腺结节的应用[J]. 中国医学影像学杂志, 2022, 30(12): 1212-1217, 1223.
[23] 王继仙, 桂坤, 陈炳宪, 等. 基于卷积神经网络的病理活检胃癌诊断模型[J]. 协和医学杂志, 2022, 13(4): 597-604.
[24] GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the Global Burden of Disease Study[J]. Lancet Glob Health, 2021, 9(2): e144-e160.
[25] 中华医学会眼科学分会眼底病学组, 中国医师协会眼科医师分会眼底病学组. 我国糖尿病视网膜病变临床诊疗指南(2022年)[J]. 中华眼底病杂志, 2023, 39(2): 99-124.
[26] Kristinsson J K, Stefánsson E, Jónasson F, et al. Systematic screening for diabetic eye disease in insulin dependent diabetes[J]. Acta Ophthalmol (Copenh), 1994, 72(1): 72-78.
[27] Agardh E, Agardh C D, Hansson-Lundblad C. The five-year incidence of blindness after introducing a screening programme for early detection of treatable diabetic retinopathy[J]. Diabet Med, 1993, 10(6): 555-559.
[28] Scanlon P H. The English national screening programme for diabetic retinopathy 2003-2016[J]. Acta Diabetol, 2017, 54(6): 515-525.
[29] Nguyen H V, Tan G S W, Tapp R J, et al. Cost-effectiveness of a national telemedicine diabetic retinopathy screening program in Singapore[J]. Ophthalmology, 2016, 123(12): 2571-2580.
[30] Mak D B, Plant A J, McAllister I. Screening for diabetic retinopathy in remote Australia: a program description and evaluation of a devolved model[J]. Aust J Rural Health, 2003, 11(5): 224-230.
[31] Jani P D, Forbes L, Choudhury A, et al. Evaluation of diabetic retinal screening and factors for ophthalmology referral in a telemedicine network[J]. JAMA Ophthalmol, 2017, 135(7): 706-714.
[32] Boucher M C, Desroches G, Garcia-Salinas R, et al. Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada[J]. Can J Ophthalmol, 2008, 43(6): 658-668.
[33] Schulze-Döbold C, Erginay A, Robert N, et al. Ophdiat(®): five-year experience of a telemedical screening programme for diabetic retinopathy in Paris and the surrounding area[J]. Diabetes Metab, 2012, 38(5): 450-457.
[34] Verma L, Prakash G, Tewari H K, et al. Screening for diabetic retinopathy by non-ophthalmologists: an effective public health tool[J]. Acta Ophthalmol Scand, 2003, 81(4): 373-377.
[35] Xu H, Wu Y. G2ViT: graph neural network-guided vision transformer enhanced network for retinal vessel and coronary angiograph segmentation[J]. Neural Netw, 2024, 176: 106356.
[36] Pandey P U, Ballios B G, Christakis P G, et al. Ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs[J]. Br J Ophthalmol, 2024, 108(3): 417-423. |