[1] Huang Y, Wang Y, Wang H, et al. Prevalence of mental disorders in China:a cross-sectional epidemiological study[J]. Lancet Psychiat,2019, 6(3):211-224. [2] Kalinichev M, Robbins M J, Hartfield E M, et al. Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats:a locomotor activity and gene induction study[J]. Prog Neuropsychopharmacol Biol Psychiat,2008, 32(2):414-422. [3] Quarta D, Large C H. Effects of lamotrigine on PCP-evoked elevations in monoamine levels in the medial prefrontal cortex of freely moving rats[J]. J Psychopharmacol, 2011, 25(12):1703-1711. [4] Adem A, Madjid N, Stiedl O, et al. Atypical but not typical antipsychotic drugs ameliorate phencyclidine-induced emotional memory impairments in mice[J]. Eur Neuropsychopharmacol,2019, 29(5):616-628. [5] Wang P, Cao T, Chen J, et al. D2 receptor-mediated miRNA-143 expression is associated with the effects of antipsychotic drugs on phencyclidine-induced schizophrenia-related locomotor hyperactivity and with Neuregulin-1 expression in mice[J]. Neuropharmacology,2019, 157:107675. [6] Grayson B, Adamson L, Harte M, et al. The involvement of distraction in memory deficits induced by NMDAR antagonism:relevance to cognitive deficits in schizophrenia[J]. Behav Brain Res,2014, 266:188-192. [7] Huang M, Kwon S, Rajagopal L, et al. 5-HT1A parital agonism and 5-HT7 antagonism restore episodic memory in subchronic phencyclidine-treated mice:role of brain glutamate, dopamine, acetylcholine and GABA[J]. Psychopharmacology (Berl),2018, 235(10):2795-2808. [8] Miyauchi M, Neugebauer N M, Meltzer H Y. Dopamine D4 receptor stimulation contributes to novel object recognition:Relevance to cognitive impairment in schizophrenia[J]. J Psychopharmacol,2017, 31(4):442-452. [9] Bullock W M, Bolognani F, Botta P, Valenzuela CF, Perrone-Bizzozero NI. Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine[J]. Neurochem Int,2009, 55(8):775-782. [10] Bullock W M, Cardon K, Bustillo J, et al. Altered expression of genes involved in GABAergic transmission and neuromodulation of granule cell activity in the cerebellum of schizophrenia patients[J]. Am J Psychiatry, 2008, 165(12):1594-1603. [11] Peters S M, Tuffnell J A, Pinter I J, et al. Short-and long-term behavioral analysis of social interaction, ultrasonic vocalizations and social motivation in a chronic phencyclidine model[J]. Behav Brain Res, 2017, 325(Pt A):34-43. [12] Stefani M R, Moghaddam B. Transient N-methyl-D-aspartate receptor blockade in early development causes lasting cognitive deficits relevant to schizophrenia[J]. Biol Psychiatry, 2005, 57(4):433-436. [13] Li C, Tang Y, Yang J, et al. Sub-chronic antipsychotic drug administration reverses the expression of neuregulin 1 and ErbB4 in a cultured MK801-induced mouse primary hippocampal neuron or a neurodevelopmental schizophrenia model[J]. Neurochem Res, 2016, 41(8):2049-2064. [14] Sonnenschein S F, Grace A A. Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia[J]. Neuropharmacology,2020, 163(2):107632. [15] Howes O D, Kambeitz J, Kim E, et al. The nature of dopamine dysfunction in schizophrenia and what this means for treatment[J]. Arch Gen Psychiatry, 2012, 69(8):776-786. [16] Drazanova E, Ruda-Kucerova J, Kratka L, et al. Different effects of prenatal MAM vs. perinatal THC exposure on regional cerebral blood perfusion detected by arterial spin labelling MRI in rats[J]. Sci Rep, 2019, 9(1):6062. [17] Huo C, Liu X, Zhao J, et al. Abnormalities in behaviour, histology and prefrontal cortical gene expression profiles relevant to schizophrenia in embryonic day 17 MAM-Exposed C57BL/6 mice[J]. Neuropharmacology,2018, 140:287-301. [18] Du Y, Li X S, Chen L, et al. A network analysis of epigenetic and transcriptional regulation in a neurodevelopmental rat model of schizophrenia with implications for translational research[J]. Schizophr Bull,2019,Epub ahead of print. [19] Matricon J, Bellon A, Frieling H, et al. Neuropathological and Reelin deficiencies in the hippocampal formation of rats exposed to MAM; differences and similarities with schizophrenia[J]. PLoS One,2010, 5(4):e10291. [20] Mar A C, Nilsson S R O, Gamallo-Lana B, et al. MAM-E17 rat model impairments on a novel continuous performance task:effects of potential cognitive enhancing drugs[J]. Psychopharmacology (Berl), 2017, 234(19):2837-2857. [21] Gastambide F, Taylor A M, Palmer C, et al. Alterations in spatial memory and anxiety in the MAM E17 rat model of hippocampal pathology in schizophrenia[J]. Psychopharmacology (Berl), 2015, 232(21-22):4099-4112. [22] Sun L, Min L, Zhou H, et al. Adolescent social isolation affects schizophrenia-like behavior and astrocyte biomarkers in the PFC of adult rats[J]. Behav Brain Res,2017, 333:258-266. [23] Li B J, Liu P, Chu Z, et al. Social isolation induces schizophrenia-like behavior potentially associated with HINT1, NMDA receptor 1, and dopamine receptor 2[J]. Neuroreport, 2017, 28(8):462-469. [24] Reinwald J R, Becker R, Mallien A S, et al. Neural mechanisms of early-life social stress as a developmental risk factor for severe psychiatric disorders[J]. Biol Psychiatry, 2018, 84(2):116-128. [25] Levine J B, Leeder A D, Parekkadan B, et al. Isolation rearing impairs wound healing and is associated with increased locomotion and decreased immediate early gene expression in the medial prefrontal cortex of juvenile rats[J]. Neuroscience, 2008, 151(2):589-603. [26] Wischhof L, Irrsack E, Osorio C, et al. Prenatal LPS-exposure-a neurodevelopmental rat model of schizophrenia-differentially affects cognitive functions, myelination and parvalbumin expression in male and female offspring[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2015, 57:17-30. [27] Waterhouse U, Roper V E, Brennan K A, et al. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure:a study in rats[J]. Dis Model Mech, 2016, 9(10):1159-1167. [28] Tellez-Merlo G, Morales-Medina J C, Camacho-Abrego I, et al. Prenatal immune challenge induces behavioral deficits, neuronal remodeling, and increases brain nitric oxide and zinc levels in the male rat offspring[J]. Neuroscience, 2019, 406:594-605. [29] Shen S, Lang B, Nakamoto C, et al. Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1[J]. J Neurosci, 2008, 28(43):10893-10904. [30] Wang A L, Fazari B, Chao O Y, et al. Intra-nasal dopamine alleviates cognitive deficits in tgDISC1 rats which overexpress the human DISC1 gene[J]. Neurobiol Learn Mem, 2017, 146:12-20. [31] Arguello P A, Gogos J A. Cognition in mouse models of schizophrenia susceptibility genes[J]. Schizophr Bull, 2010, 36(2):289-300. [32] Deakin I H, Nissen W, Law A J, et al. Transgenic overexpression of the type I isoform of neuregulin 1 affects working memory and hippocampal oscillations but not long-term potentiation[J]. Cereb Cortex, 2012, 22(7):1520-1529. [33] Zhang Q, Esrafilzadeh D, Crook J M, et al. Electrical stimulation using conductive polymer polypyrrole counters reduced neurite outgrowth of primary prefrontal cortical neurons from NRG1-KO and DISC1-LI mice[J]. Sci Rep, 2017, 7:42525. [34] Papaleo F, Yang F, Paterson C, et al. Behavioral, Neurophysiological, and synaptic impairment in a transgenic neuregulin1(NRG1-IV) murine schizophrenia model[J]. J Neurosci, 2016, 36(17):4859-4875. [35] 徐园园,贾竑晓.精神分裂症临床分期模型的研究进展[J].首都医科大学学报,2018, 39(2):213-216. |