[1]Subekti I, Soewondo P, Soebardi S, et al. Practical guidelines management of Graves ophthalmopathy[J]. Acta Med Indones, 2019, 51(4): 364-371.
[2]Antonelli A, Fallahi P, Elia G, et al. Graves disease: clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy [J]. Best Pract Res Clin Endocrinol Metab, 2020, 34(1):101388.
[3]Mishra S, Maurya V K, Kumar S, et al. Clinical management and therapeutic strategies for the thyroid-associated ophthalmopathy: current and future perspectives[J]. Curr Eye Res, 2020, 45(11):1325-1341.
[4]Fallahi P, Ferrari S M, Elia G, et al. Cytokines as targets of novel therapies for Graves ophthalmopathy[J]. Front Endocrinol (Lausanne),2021, 12:654473.
[5]Jiang M, Zhao J, Wang P, et al. Research progress in Th17 cells and the relevant cytokines in Graves ophthalmopathy[J]. J Central South Univ (Med Ed), 2022, 47(12):1748-1753.
[6]Huang Y, Wu Y, Zhang S, et al. Immunophenotype of lacrimal glands in Graves orbitopathy: implications for the pathogenesis of Th1 and Th17 immunity[J]. Thyroid, 2022,32(8):949-961.
[7]Wang N, Chen F E, Long Z W. Mechanism of microRNA-146a/Notch2 signaling regulating IL-6 in Graves ophthalmopathy[J]. Cell Physiol Biochem, 2017,41(4):1285-1297.
[8]Sánchez-Bilbao L, Martínez-López D, Revenga M, et al. Anti-IL-6 receptor tocilizumab in refractory Graves orbitopathy: national multicenter observational study of 48 patients[J]. J Clin Med,2020, 9(9):2816.
[9]Chen Q. The expression of interleukin-15 and interleukin-17 in tears and orbital tissues of Graves ophthalmopathy patients[J]. J Cell Biochem, 2019, 120(4):6299-6303.
[10]Du J, Wang X, Tan G, et al. Predisposition to Graves disease and Graves ophthalmopathy by genetic variants of IL2RA[J]. J Mol Med, 2021, 99(10):1487-1495.
[11]Wu T, Mester T, Gupta S, et al. Thyrotropin and CD40L stimulate interleukin-12 expression in fibrocytes: implications for pathogenesis of thyroid-associated ophthalmopathy[J]. Thyroid, 2016, 26(12):1768-1777.
[12]Fernando R, Caldera O, Smith T J. Therapeutic IGF-I receptor inhibition alters fibrocyte immune phenotype in thyroid-associated ophthalmopathy [J]. Proc Natl Acad Sci U S A, 2021, 118(52):e2114244118.
[13]Gonnella D. The Th1 chemokine MIG in Graves ophthalmopathy[J]. Clin Ter, 2019, 170(5):e368-e372.
[14]Kishazi E, Dor M, Eperon S, et al. Differential profiling of lacrimal cytokines in patients suffering from thyroid-associated orbitopathy[J]. Sci Rep, 2018, 8(1):10792.
[15]Song R H, Wang B, Yao Q M, et al. Proteomics screening of differentially expressed cytokines in tears of patients with Graves ophthalmopathy[J]. Endocr Metab Immune Disord Drug Targets, 2020, 20(1):87-95.
[16]Fang S, Huang Y, Wang N, et al. Insights into local orbital immunity: evidence for the involvement of the Th17 cell pathway in thyroid-associated ophthalmopathy[J]. J Clin Endocrinol Metab,2019, 104(5):1697-1711.
[17]Fang S, Lu Y, Huang Y, et al. Mechanisms that underly T cell immunity in Graves orbitopathy[J]. Front Endocrinol (Lausanne), 2021, 12:648732.
[18]Shan J, Jin H, Xu Y. T cell metabolism: a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus[J]. Front Immunol, 2020, 11:1027.
[19]Dong W, Zhu P. Functional niche of inflamed synovium for Th17-cell expansion and activation in rheumatoid arthritis: implication to clinical therapeutics[J]. Autoimmun Rev, 2012, 11(12):844-851.
[20]Kociuszko M, Popawska-Kita A, Pawowski P, et al. Clinical relevance of estimating circulating interleukin-17 and interleukin-23 during methylprednisolone therapy in Graves orbitopathy: a preliminary study[J]. Adv Med Sci, 2021,66(2):315-320.
[21]Mu P W, Tang X X, Wang Y N, et al. Comparison of two regimens for patients with thyroid-associated ophthalmopathy receiving intravenous methyl prednisolone: A single center prospective randomized trial[J]. Exp Ther Med, 2020,20(6):153.
|