[1]Sun H, Saeedi P, Karuranga S, et al. Erratum to"IDF diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045"[diabetes Res.Clin.pract.183(2022)109119][J]. Diabetes Res Clin Pract 2023, 204: 110945.
[2]Afkarian M, Zelnick L R, Hall Y N, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014[J]. JAMA, 2016, 316(6): 602-610.
[3]Wal P, Tyagi S, Pal R S, et al. A strategic investigation on diabetic nephropathy; its conceptual model and clinical manifestations: a review[J]. Curr Diabetes Rev, 2023, 19(5): e260422204036.
[4]Jiang G Z, Luk A O Y, Tam C H T, et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with type 2 diabetes[J]. Kidney Int, 2019, 95(1): 178-187.
[5]D'Alessandro V F, Takeshita A, Yasuma T, et al. Transforming growth factorβ1 overexpression is associated with insulin resistance and rapidly progressive kidney fibrosis under diabetic conditions[J]. Int J Mol Sci, 2022, 23(22): 14265.
[6]Ricciardi C A, Gnudi L. Kidney disease in diabetes: from mechanisms to clinical presentation and treatment strategies[J]. Metabolism, 2021, 124: 154890.
[7]Noecker C, Turnbaugh P J. Emerging tools and best practices for studying gut microbial community metabolism[J]. Nat Metab, 2024, 6(7): 1225-1236.
[8]Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters[J]. Trends Microbiol, 2018, 26(7): 563-574.
[9]Yang G, Wei J L, Liu P Y, et al. Role of the gut microbiota in type 2 diabetes and related diseases[J]. Metabolism, 2021, 117: 154712.
[10]Johnson E L, Heaver S L, Walters W A, et al. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes[J]. J Mol Med, 2017, 95(1): 1-8.
[11]Giordano L, Mihaila S M, Eslami Amirabadi H, et al. Microphysiological systems to recapitulate the gut-kidney axis[J]. Trends Biotechnol, 2021, 39(8): 811-823.
[12]Vallianou N G, Kounatidis D, Panagopoulos F, et al. Gut microbiota and its role in the brain-gut-kidney axis in hypertension[J]. Curr Hypertens Rep, 2023, 25(11): 367-376.
[13]Wang X F, Yang S T, Li S H, et al. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents[J]. Gut, 2020, 69(12): 2131-2142.
[14]Graboski A L, Redinbo M R. Gut-derived protein-bound uremic toxins[J]. Toxins, 2020, 12(9): 590.
[15]Linh H T, Iwata Y, Senda Y, et al. Intestinal bacterial translocation contributes to diabetic kidney disease[J]. J Am Soc Nephrol, 2022, 33(6): 1105-1119.
[16]Lambie M, Bonomini M, Davies S J, et al. Insulin resistance in cardiovascular disease, uremia, and peritoneal dialysis[J]. Trends Endocrinol Metab, 2021, 32(9): 721-730.
[17]Takeuchi T, Kubota T, Nakanishi Y, et al. Gut microbial carbohydrate metabolism contributes to insulin resistance[J]. Nature, 2023, 621(7978): 389-395.
[18]Greenhill C. Gut microbiota: Firmicutes and Bacteroidetes involved in insulin resistance by mediating levels of glucagon-like peptide 1[J]. Nat Rev Endocrinol, 2015, 11(5): 254.
[19]Ma P, Zhang Y, Yin Y J, et al. Gut microbiota metabolite tyramine ameliorates high-fat diet-induced insulin resistance via increased Ca2+ signaling[J]. EMBO J, 2024, 43(16): 3466-3493.
[20]Yue S J, Liu J, Wang A T, et al. Berberine alleviates insulin resistance by reducing peripheral branched-chain amino acids[J]. Am J Physiol Endocrinol Metab, 2019, 316(1): E73-E85.
[21]Zhai L X, Xiao H T, Lin C Y, et al. Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome[J]. Nat Commun, 2023, 14(1): 4986.
[22]Saad M J A, Santos A, Prada P O. Linking gut microbiota and inflammation to obesity and insulin resistance[J]. Physiology, 2016, 31(4):283-293.
[23]Guo Y L, Xie G X, Zhang X Y. Role of FXR in renal physiology and kidney diseases[J]. Int J Mol Sci, 2023, 24(3): 2408.
[24]She J Q, Tuerhongjiang G, Guo M Y, et al. Statins aggravate insulin resistance through reduced blood glucagon-like peptide-1 levels in a microbiota-dependent manner[J]. Cell Metab, 2024, 36(2): 408-421, e5.
[25]Naaman S C, Bakris G L. Diabetic nephropathy: update on pillars of therapy slowing progression[J]. Diabetes Care, 2023, 46(9): 1574-1586.
[26]Jaworska K, Koper M, Ufnal M. Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 321(4): G355-G366.
[27]Naaman S C, Bakris G L. Diabetic Nephropathy: Update on Pillars of Therapy Slowing Progression[J]. Diabetes care,2023,46(9): 1574-1586.
[28]Lu C C, Hu Z B, Wang R, et al. Gut microbiota dysbiosis-induced activation of the intrarenal renin-angiotensin system is involved in kidney injuries in rat diabetic nephropathy[J]. Acta Pharmacol Sin, 2020, 41(8): 1111-1118.
[29]Vanholder R, Schepers E, Pletinck A, et al. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review[J]. J Am Soc Nephrol, 2014,25(9):1897-907.
[30]Lohia S, Valkenburg S, Stroggilos R, et al. Investigation of the human-gut-kidney axis by fecal proteomics, highlights molecular mechanisms affected in CKD[J]. Heliyon, 2024, 10(12): e32828.
[31]Lu C C, Ma K L, Ruan X Z, et al. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy[J]. Int J Med Sci, 2018, 15(8): 816-822.
[32]Liu W, Tan Z N, Geng M R, et al. Impact of the gut microbiota on angiotensin Ⅱ-related disorders and its mechanisms[J]. Biochem Pharmacol, 2023, 214: 115659.
[33]Brennan E, Kantharidis P, Cooper ME, et al. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function[J]. Nat Rev Nephrol. 2021 Nov;17(11):725-739.
[34]Mishra S P, Wang B, Jain S, et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut[J]. Gut, 2023, 72(10): 1848-1865.
[35]Wang L, Zhu Q, Lu A H, et al. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system[J]. J Hypertens, 2017, 35(9): 1899-1908.
[36]Chen Z Q, Liang W J, Liang J, et al. Probiotics: functional food ingredients with the potential to reduce hypertension[J]. Front Cell Infect Microbiol, 2023, 13: 1220877.
[37]Zhao L, Hu H R, Zhang L, et al. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions[J]. Med Comm, 2024, 5(4): e516.
[38]Srivastava A, Tomar B, Sharma D, et al. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease[J]. Life Sci, 2023, 319:121432.
[39]Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010,107(9):1058-1070.
[40]Ni Y H, Zheng L J, Nan S J, et al. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota[J]. Acta Biochim Biophys Sin, 2022, 54(10): 1406-1420.
[41]Mosterd C M, Kanbay M, Van Den Born B J H, et al. Intestinal microbiota and diabetic kidney diseases: the role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression[J]. Best Pract Res Clin Endocrinol Metab, 2021, 35(3): 101484.
[42]Zhou W, Wu W H, Si Z L, et al. The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice[J]. Nat Commun, 2022, 13(1): 6081.
[43]Yadegar A, Bar-Yoseph H, Monaghan T M, et al. Fecal microbiota transplantation: current challenges and future landscapes[J]. Clin Microbiol Rev, 2024, 37(2): e0006022.
[44]Rizzetto L, Fava F, Tuohy K M, et al. Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex[J]. J Autoimmun, 2018, 92: 12-34.
[45]Porcari S, Benech N, Valles-Colomer M, et al. Key determinants of success in fecal microbiota transplantation: from microbiome to clinic[J]. Cell Host Microbe, 2023, 31(5): 712-733.
[46]Ding D F, Yong H J, You N, et al. Prospective study reveals host microbial determinants of clinical response to fecal microbiota transplant therapy in type 2 diabetes patients[J]. Front Cell Infect Microbiol, 2022, 12: 820367.
[47]Yang Y, Yan J J, Li S, et al. Efficacy of fecal microbiota transplantation in type 2 diabetes mellitus: a systematic review and meta-analysis[J]. Endocrine, 2024, 84(1): 48-62.
[48]Meng F Y, Zhang F, Meng M, et al. Effects of the synbiotic composed of mangiferin and Lactobacillus reuteri 1-12 on type 2 diabetes mellitus rats[J]. Front Microbiol, 2023, 14: 1158652.
[49]Ross P. Expression of concern: metabolic and genetic response to probiotics supplementation in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial[J]. Food Funct, 2022, 13(7): 4229.
[50]Ma J H, Lv Y H, Liu X, et al. Engineered probiotics[J]. Microb Cell Fact, 2022, 21(1): 72.
[51]Wang X L, Chen W J, Jin R, et al. Engineered probiotics clostridium butyricum-pMTL007-GLP-1 improves blood pressure via producing GLP-1 and modulating gut microbiota in spontaneous hypertension rat models[J]. Microb Biotechnol, 2023, 16(4): 799-812.
[52]Deng F, Zhang L Q, Wu H, et al. Propionate alleviates myocardial ischemia-reperfusion injury aggravated by Angiotensin II dependent on caveolin-1/ACE2 axis through GPR41[J]. Int J Biol Sci, 2022, 18(2): 858-872.
[53]Ma J, Lyu Y, Liu X, et al. Engineered probiotics. Microb Cell Fact, 2022, 21(1):72.
[54]Hu H, Luo J, Liu Y, et al. Improvement effect of a next-generation probiotic L. plantarum-pMG36e-GLP-1 on type 2 diabetes mellitus via the gut-pancreas-liver axis[J]. Food Funct, 2023, 14(7): 3179-3195.
[55]Beam A, Clinger E, Hao L. Effect of diet and dietary components on the composition of the gut microbiota[J]. Nutrients, 2021, 13(8): 2795.
[56]Frazier K, Kambal A, Zale E A, et al. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction[J]. Cell Host Microbe, 2022, 30(6): 809-823, e6.
[57]Li Y J, Chen X C, Kwan T K, et al. Dietary fiber protects against diabetic nephropathy through short-chain fatty acid-mediated activation of G protein-coupled receptors GPR43 and GPR109A[J]. J Am Soc Nephrol, 2020, 31(6): 1267-1281.
[58]Nakamura N, Nagawa D, Nakata M, et al. Dietary intake of polyunsaturated fatty acids and diabetic nephropathy: cohort analysis of the Tsugaru study[J]. In Vivo, 2023, 37(4): 1890-1893.
[59]Shapiro H, Theilla M, Attal-Singer J, et al. Effects of polyunsaturated fatty acid consumption in diabetic nephropathy[J]. Nat Rev Nephrol, 2011, 7(2):110-21.
[60]Cheng M H, Ren L L, Jia X X, et al. Understanding the action mechanisms of metformin in the gastrointestinal tract[J]. Front Pharmacol, 2024, 15: 1347047.
[61]Deng L, Yang Y, Xu G S. Empagliflozin ameliorates type 2 diabetes mellitus-related diabetic nephropathy via altering the gut microbiota[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867(12): 159234.
[62]Singh H, Miyamoto S, Darshi M, et al. Gut microbial changes in diabetic db/db mice and recovery of microbial diversity upon pirfenidone treatment[J]. Microorganisms, 2020, 8(9): 1347.
[63]Wu X Q, Zhao L, Zhao Y L, et al. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota[J]. Pharm Biol, 2024, 62(1): 423-435.
|