[1] Xiao N, Zhang C. Selective monitoring of Cu(II) with a fluorescence-on naphthalene-based probe in aqueous solution[J]. Inorg Chem Commun, 2019, 107: 107467. [2] Bao Z, Qin C, Wang J J, et al. A sensitive and selective probe for visual detection of Cu2+ based on 1, 8-naphthalimidederivative[J]. Sens Actuators B Clem, 2018, 265: 234-241. [3] Nagarkar S S, Desai A V, Ghosh S K. A nitro-functionalized metal-organic framework as a reaction-based fluorescence turn-on probe for rapid and selective H2S detection[J]. Chem Eur J, 2015, 21(28): 9994-9997. [4] Wang W, Wu C, Yang C, et al. A dual-functional luminescent probe for imaging H2S in living zebrafish and discrimination hypoxic cells from normoxic cells[J]. Sens Actuators B, 2018, 255: 1953-1959. [5] Xiao N, Xie L, Zhi X, et al. A naphthol-based highly selective fluorescence turn-on and reversible sensor for Al(III) ion[J]. Inorg Chem Commun, 2018, 89: 13-17. [6] Zhang X, Jiang Y, Xiao N, et al. Monitoring ADP and ATP in vivo using a fluorescent Ga(Ⅲ)-probe complex[J]. Chem Commun, 2018, 54(91): 12812-12815. [7] Huang Q, Wang T, Xiao N. Selective monitoring ATP using a fluorogenic Al(Ⅲ)-probe complex in aqueous medium[J]. Spectrochim Acta A, 2020, 229: 117946. [8] Zhang F, Liang X, Zhang W, et al. A unique iridium(Ⅲ) complex-based chemosensor for multi-signal detection and multi-channel imaging of hypochlorous acid in liver injury[J]. Biosens Bioelectron, 2017, 87: 1005-1011. [9] Ohata J, Vohidov F, Aliyan A, et al. Luminogenic iridium azide complexes[J]. Chem Commun, 2015, 51(82): 15192-15915. [10]Belhadj E, El-Ghayoury A, Cauchy T, et al. Tetrathiafulvalene-based phenanthroline ligands: synthesis, crystal structures, and electronic properties[J]. Eur J Inorg Chem, 2014, 2014(24): 3912-3919. [11]Bos J, Fusetti F, Driessen A J, et al. Enantioselective artificial metalloenzymes by creation of a novel active site at the protein dimer interface[J]. Angew Chem Int Ed Engl, 2012, 51(30): 7472-7475. [12]Sprouse S, King K A, Spellane P J, et al. Photophysical effects of metal-carbon σ bonds in ortho-metalated complexes of iridium(Ⅲ) and rhodium(Ⅲ)[J]. J Am Chem Soc, 1984, 106(22): 6647-6653. [13]Schmittel M, Lin H. Luminescent iridium phenanthroline crown ether complex for the detection of silver(I) ions in aqueous media[J]. Inorg Chem, 2007, 46(22): 9139-9145. [14]Lu F, Yamamura M, Nabeshima T. Luminescent biscyclometalated iridium(Ⅲ) complex for selective and switchable Cu2+ ion binding in aqueous media[J]. Tetrahedron Lett, 2013, 54(8): 779-782. [15]Ye Z, An X, Song B, et al. A novel dinuclear ruthenium(II)-copper(II) complex-based luminescent probe for hydrogen sulfide[J]. Dalton Trans, 2014, 43(34): 13055-13060. [16]Zhang C, Liu M, Liu S, et al. Phosphorescence lifetime imaging of labile Zn2+ in mitochondria via a phosphorescent iridium(Ⅲ) complex[J]. Inorg Chem, 2018, 57(17): 10625-10632. [17]King K A, Spellane P J, Watts R J. Excited-state properties of a triply ortho-metalated iridium(Ⅲ) complex[J]. J Am Chem Soc, 1985, 107(5): 1431-1432. [18]Dedeian K, Djurovich P I, Garces F O, et al. A new synthetic route to the preparation of a series of strong photoreducing agents-fac-tris-ortho-metalated complexes of iridium(Ⅲ) with substituted 2-phenylpyridines[J]. Inorg Chem, 1991, 30(8): 1685-1687. [19]Colombo M G, Brunold T C, Riedener T, et al. Facial tris cyclometalated Rh3+ and Ir3+ complexes-their synthesis, structure, and optical spectroscopic properties[J]. Inorg Chem, 1994, 33(3): 545-550. [20]Schmid B, Garces F O, Watts R J. Synthesis and characterization of cyclometalated iridium(Ⅲ) solvento complexes[J]. Inorg Chem, 1994, 33(1): 9-14. |