[1]Jin H J, Wang L Q, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges[J]. Nat Rev Drug Discov, 2023, 22(3): 213-234.
[2]Yan Y T, Zhou Y, Li J T, et al. Sulforaphane downregulated fatty acid synthase and inhibited microtubule-mediated mitophagy leading to apoptosis[J]. Cell Death Dis, 2021, 12(10): 917.
[3]Li J T, Zhou Y, Yan Y T, et al. Sulforaphane-cysteine downregulates CDK4 /CDK6 and inhibits tubulin polymerization contributing to cell cycle arrest and apoptosis in human glioblastoma cells[J]. Aging (Albany NY), 2020, 12(17): 16837-16851.
[4]Zhou Y, Wang Y L, Wu S, et al. Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells[J]. Cell Death Dis, 2020, 11(9): 819.
[5]Zheng Z N, Lin K, Hu Y B, et al. Sulforaphane metabolites inhibit migration and invasion via microtubule-mediated Claudins dysfunction or inhibition of autolysosome formation in human non-small cell lung cancer cells[J]. Cell Death Dis, 2019, 10(4): 259.
[6]Hu Y B, Zhou Y, Yang G X, et al. Sulforaphane-N-acetyl-cysteine inhibited autophagy leading to apoptosis via Hsp70-mediated microtubule disruption[J]. Cancer Lett, 2018, 431: 85-95.
[7]Wang Y L, Zhou Y, Zheng Z N, et al. Sulforaphane metabolites reduce resistance to paclitaxel via microtubule disruption[J]. Cell Death Dis, 2018, 9(11): 1134.
[8]Zhou Y, Yang G X, Tian H, et al. Sulforaphane metabolites cause apoptosis via microtubule disruption in cancer[J]. Endocr Relat Cancer, 2018, 25(3): 255-268.
[9]Zhou Y, Wu W. Sulforaphanes: disruptors of phagophores and autolysosomes[J]. Autophagy Rep, 2022, 1(1): 192-196.
[10]Howard J, Hyman A A. Dynamics and mechanics of the microtubule plus end [J]. Nature, 2003, 422(6933): 753-758.
[11]C∨ermák V, Dostál V, Jelínek M, et al. Microtubule-targeting agents and their impact on cancer treatment[J]. Eur J Cell Biol, 2020, 99(4): 151075.
[12]Vindya N G, Sharma N, Yadav M, et al. Tubulins—the target for anticancer therapy[J]. Curr Top Med Chem, 2015, 15(1): 73-82.
[13]Freedman H, Huzil J T, Luchko T, et al. Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity [J]. J Chem Inf Model, 2009, 49(2): 424-436.
[14]Mi L X, Chung F L. Binding to protein by isothiocyanates: a potential mechanism for apoptosis induction in human non small lung cancer cells[J]. Nutr Cancer, 2008, 60(Suppl): 12-20.
[15]Sellin M E, Holmfeldt P, Stenmark S, et al. Op18/stathmin counteracts the activity of overexpressed tubulin-disrupting proteins in a human leukemia cell line[J]. Exp Cell Res, 2008, 314(6): 1367-1377.
[16]Filbert E L, Le Borgne M, Lin J, et al. Stathmin regulates microtubule dynamics and microtubule organizing center polarization in activated T cells[J]. J Immunol, 2012, 188(11): 5421-5427.
[17]Rosenzweig R, Nillegoda N B, Mayer M P, et al. The Hsp70 chaperone network[J]. Nat Rev Mol Cell Biol, 2019, 20(11): 665-680.
[18]Lim S, Kim D G, Kim S. ERK-dependent phosphorylation of the linker and substrate-binding domain of HSP70 increases folding activity and cell proliferation[J]. Exp Mol Med, 2019, 51(9): 1-14.
[19]Wang T, Wang Q W, Song R L, et al. Cadmium induced inhibition of autophagy is associated with microtubule disruption and mitochondrial dysfunction in primary rat cerebral cortical neurons[J]. Neurotoxicol Teratol, 2016, 53: 11-18.
[20]Schmidt O, Pfanner N, Meisinger C. Mitochondrial protein import: from proteomics to functional mechanisms[J]. Nat Rev Mol Cell Biol, 2010, 11(9): 655-667.
[21]Geissler A,Chacinska A, Truscott K N, et al. The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel[J]. Cell, 2002, 111(4): 507-518.
[22]Donzeau M, Káldi K, Adam A, et al. Tim23 links the inner and outer mitochondrial membranes[J]. Cell, 2000, 101(4): 401-412.
[23]Ruan L H, Zhou C K, Jin E L, et al. Cytosolic proteostasis through importing of misfolded proteins into mitochondria[J]. Nature, 2017, 543(7645): 443-446.
[24]Campello S, Strappazzon F, Cecconi F. Mitochondrial dismissal in mammals, from protein degradation to mitophagy[J]. Biochim Biophys Acta, 2014, 1837(4): 451-460.
[25]Matsushima Y, Takahashi K, Yue S, et al. Mitochondrial Lon protease is a gatekeeper for proteins newly imported into the matrix[J]. Commun Biol, 2021, 4(1): 974.
[26]Pollecker K, Sylvester M, Voos W. Proteomic analysis demonstrates the role of the quality control protease LONP1 in mitochondrial protein aggregation[J]. J Biol Chem, 2021, 297(4): 101134.
[27]Lu B. Mitochondrial Lon protease and cancer[J]. Adv Exp Med Biol, 2017, 1038: 173-182.
[28]Lee J, Pandey A K, Venkatesh S, et al. Inhibition of mitochondrial LonP1 protease by allosteric blockade of ATP binding and hydrolysis via CDDO and its derivatives [J]. J Biol Chem, 2022, 298(3): 101719.
[29]Kim J E, Park H, Kim T H, et al. LONP1 regulates mitochondrial accumulations of HMGB1 and caspase-3 in CA1 and PV neurons following status epilepticus[J]. Int J Mol Sci, 2021, 22(5): 2275.
[30]Fass E, Shvets E, Degani I, et al. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes[J]. J Biol Chem, 2006, 281(47): 36303-36316.
[31]Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission[J]. Biochim Biophys Acta, 2013, 1833(5): 1256-1268.
[32]Kumazawa A, Katoh H, Nonaka D, et al. Microtubule disorganization affects the mitochondrial permeability transition pore in cardiac myocytes[J]. Circ J, 2014, 78(5): 1206-1215.
[33]Mohan N, Sorokina E M, Verdeny I V, et al. Detyrosinated microtubules spatially constrain lysosomes facilitating lysosome-autophagosome fusion[J]. J Cell Biol, 2019, 218(2): 632-643.
[34]Jin S M, Youle R J. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria[J]. Autophagy, 2013, 9(11): 1750-1757.
[35]Martinez J, Malireddi R K S, Lu Q, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins[J]. Nat Cell Biol, 2015, 17(7): 893-906.
[36]Axelsson A S, Tubbs E, Mecham B, et al. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes[J]. Sci Transl Med, 2017, 9(394): eaah4477.
|