Journal of Capital Medical University ›› 2020, Vol. 41 ›› Issue (4): 664-670.doi: 10.3969/j.issn.1006-7795.2020.04.029
• Review • Previous Articles Next Articles
Wu Jian1, Gu Yakun2, Liu Jia2
Received:
2020-06-23
Online:
2020-08-21
Published:
2020-07-22
Supported by:
CLC Number:
Wu Jian, Gu Yakun, Liu Jia. Research progresses in neuroprotective effects of ischemic/hypoxia preconditioning[J]. Journal of Capital Medical University, 2020, 41(4): 664-670.
[1] | Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986, 74(5):1124-1136. |
[2] | Hausenloy D J and Yellon D M. Ischaemic conditioning and reperfusion injury[J]. Nat Rev Cardiol, 2016, 13(4):193-209. |
[3] | McDonough A, Weinstein J R. The role of microglia in ischemic preconditioning[J]. Glia, 2020, 68(3):455-471. |
[4] | Li C, Xu M, Wu Y, et al. Limb remote ischemic preconditioning attenuates lung injury after pulmonary resection under propofol-remifentanil anesthesia:a randomized controlled study[J]. Anesthesiology, 2014, 121(2):249-259. |
[5] | Li S, Hafeez A, Noorulla F, et al. Preconditioning in neuroprotection:from hypoxia to ischemia[J]. Prog Neurobiol, 2017, 157:79-91. |
[6] | Ekeloef S, Homilius M, Stilling M, et al. The effect of remote ischaemic preconditioning on myocardial injury in emergency hip fracture surgery (PIXIE trial):phase Ⅱ randomised clinical trial[J]. BMJ, 2019, 367:l6395. |
[7] | Lee P, Chandel N S, Simon M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. (2020-05-14).. https://doi:10.1038/s41580-020-0227-y. |
[8] | Zhu T, Zhan L, Liang D, et al. Hypoxia-inducible factor 1alpha mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia[J]. J Neuropathol Exp Neurol, 2014, 73(10):975-986. |
[9] | Apte R S, Chen D S, Ferrara N. VEGF in signaling and disease:beyond discovery and development[J]. Cell, 2019, 176(6):1248-1264. |
[10] | Shao G, Gao C Y, Lu G W. Alterations of hypoxia-inducible factor-1 alpha in the hippocampus of mice acutely and repeatedly exposed to hypoxia[J]. Neurosignals, 2005, 14(5):255-261. |
[11] | Veys K, Fan Z, Ghobrial M, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. (2020-05-14).. https://doi:10.1161/CIRCRESAHA.119.316463. |
[12] | Joost H G, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators:nomenclature, sequence characteristics, and potential function of its novel members (review)[J]. Mol Membr Biol, 2001, 18(4):247-256. |
[13] | Kuhrt D, Wojchowski D M. Emerging EPO and EPO receptor regulators and signal transducers[J]. Blood, 2015, 125(23):3536-3541. |
[14] | Bickler P E, Buck L T. Hypoxia tolerance in reptiles, amphibians, and fishes:life with variable oxygen availability[J]. Annu Rev Physiol, 2007, 69:145-170. |
[15] | Stenzel-Poore M P, Stevens S L, Xiong Z, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia:similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states[J]. Lancet, 2003, 362(9389):1028-1037. |
[16] | Divald A, Kivity S, Wang P, et al. Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits[J]. Circ Res, 2010, 106(12):1829-1838. |
[17] | Bolanos J P, Almeida A, Moncada S. Glycolysis:a bioenergetic or a survival pathway?[J]. Trends Biochem Sci, 2010, 35(3):145-149. |
[18] | Sies H and Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol.(2020-03-30).. https://doi:10.1038/s41580-020-0230-3. |
[19] | Bell K F, Al-Mubarak B, Fowler J H, et al. Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning[J]. Proc Natl Acad Sci U S A, 2011, 108(1):E1-2; author reply E3-4. |
[20] | Nadtochiy S M, Baker P R, Freeman B A, et al. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning:implications for cardioprotection[J]. Cardiovasc Res, 2009, 82(2):333-340. |
[21] | Kannurpatti S S. Mitochondrial calcium homeostasis:implications for neurovascular and neurometabolic coupling[J]. J Cereb Blood Flow Metab, 2017, 37(2):381-395. |
[22] | Sheng R, Liu X Q, Zhang L S, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning[J]. Autophagy, 2012, 8(3):310-325. |
[23] | Azad P, Ryu J, Haddad G G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia[J]. Free Radic Biol Med, 2011, 51(2):530-538. |
[24] | Shi K, Tian D C, Li Z G, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11):1058-1066. |
[25] | Gelderblom M, Leypoldt F, Steinbach K, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke[J]. Stroke, 2009, 40(5):1849-1857. |
[26] | Cui G H, Wu J, Mou F F, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018, 32(2):654-668. |
[27] | Sen E, Basu A, Willing L B, et al. Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties[J]. ASN Neuro, 2011, 3(3):e00062. |
[28] | Song W M, Colonna M. The identity and function of microglia in neurodegeneration[J]. Nat Immunol, 2018, 19(10):1048-1058. |
[29] | Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases[J]. Mol Neurobiol, 2016, 53(2):1181-1194. |
[30] | Wang J, Xing H, Wan L, et al. Treatment targets for M2 microglia polarization in ischemic stroke[J]. Biomed Pharmacother, 2018, 105:518-525. |
[31] | Bock F J, Tait S W G. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2):85-100. |
[32] | Miranda C, Fagundes D J, Miranda E, et al. The role of ischemic preconditioning in the expression of apoptosis-related genes in a rat model of intestinal ischemia-reperfusion injury[J]. Acta Cir Bras, 2019, 34(5):e201900501. |
[33] | Olloquequi J, Cornejo-Cordova E, Verdaguer E, et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders:therapeutic implications[J]. J Psychopharmacol, 2018, 32(3):265-275. |
[34] | Magi S, Piccirillo S, Amoroso S. The dual face of glutamate:from a neurotoxin to a potential survival factor-metabolic implications in health and disease[J]. Cell Mol Life Sci, 2019, 76(8):1473-1488. |
[35] | Fullana N, Gasull-Camos J, Tarres-Gatius M, et al. Astrocyte control of glutamatergic activity:downstream effects on serotonergic function and emotional behavior[J]. Neuropharmacology, 2020, 166:107914. |
[36] | Gong J, Gong S, Zhang M, et al. Cerebral ischemic preconditioning reduces glutamate excitotoxicity by up-regulating the uptake activity of GLT-1 in rats[J]. Amino Acids, 2014, 46(6):1537-1545. |
[37] | Stavoe A K H, Holzbaur E L F. Autophagy in Neurons[J]. Annu Rev Cell Dev Biol, 2019, 35:477-500. |
[38] | Park H K, Chu K, Jung K H, et al. Autophagy is involved in the ischemic preconditioning[J]. Neurosci Lett, 2009, 451(1):16-19. |
[39] | Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice[J]. Nature, 2006, 441(7095):880-884. |
[40] | Grotta J C. tPA for stroke:important progress in achieving faster treatment[J]. JAMA, 2014, 311(16):1615-1617. |
[41] | Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia:from experimental strategies to clinical use[J]. Lancet Neurol, 2009, 8(4):398-412. |
[42] | Emberson J, Lees K R, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke:a meta-analysis of individual patient data from randomised trials[J]. Lancet, 2014, 384(9958):1929-1935. |
[43] | Wang W W, Chen D Z, Zhao M, et al. Prior transient ischemic attacks may have a neuroprotective effect in patients with ischemic stroke[J]. Arch Med Sci, 2017, 13(5):1057-1061. |
[44] | Vellimana A K, Milner E, Azad T D, et al. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke, 2011, 42:776-782. |
[45] | Chan M T, Boet R, Ng S C, et al. Effect of ischemic preconditioning on brain tissue gases and pH during temporary cerebral artery occlusion[J]. Acta Neurochir Suppl, 2005, 95:93-96. |
[46] | Sales A H A, Barz M, Bette S, et al. Impact of ischemic preconditioning on surgical treatment of brain tumors:a single-center, randomized, double-blind, controlled trial[J]. BMC Med, 2017, 15(1):137. |
[47] | Manukhina E B, Downey H F, Shi X, et al. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease[J]. Exp Biol Med (Maywood), 2016, 241(12):1351-1363. |
[48] | Zhang K, Zhao T, Huang X, et al. Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia[J]. Neurobiol Dis, 2014, 64:66-78. |
[49] | Wei L, Sun C, Lei M, et al. Activation of Wnt/beta-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity[J]. J Mol Neurosci, 2013, 49(1):105-115. |
[50] | Mazumdar J, O'Brien W T, Johnson R S, et al. O2 regulates stem cells through Wnt/beta-catenin signalling[J]. Nat Cell Biol, 2010, 12(10):1007-1013. |
[51] | Vaughn C B, Jakimovski D, Kavak K S, et al. Epidemiology and treatment of multiple sclerosis in elderly populations[J]. Nat Rev Neurol, 2019, 15(6):329-342. |
[52] | Faissner S, Plemel J R, Gold R, et al. Progressive multiple sclerosis:from pathophysiology to therapeutic strategies[J]. Nat Rev Drug Discov, 2019, 18(12):905-922. |
[53] | Van Kaer L, Postoak J L, Wang C, et al. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE[J]. Cell Mol Immunol, 2019, 16(6):531-539. |
[54] | Esen N, Katyshev V, Serkin Z, et al. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE[J]. J Neuroinflammation, 2016, 13:13. |
[55] | Halder S K, Kant R, and Milner R. Hypoxic pre-conditioning suppresses experimental autoimmune encephalomyelitis by modifying multiple properties of blood vessels[J]. Acta Neuropathol Commun, 2018, 6(1):86. |
[56] | Prosser-Loose E J, Hassan A, Mitchell G S, et al. Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury[J]. J Neurotrauma, 2015, 32(18):1403-1412. |
[57] | Wei L, Fraser J L, Lu Z Y, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats[J]. Neurobiol Dis, 2012, 46(3):635-645. |
[58] | Oh J S, Ha Y, An S S, et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model[J]. Neurosci Lett, 2010, 472(3):215-219. |
[1] | Xu Jianke, Liu Ning, Han Miao, Zhang Hongyang, Han Xinsheng. Analysis of the relationship between non-high-density lipoprotein cholesterol and arterial plaque characteristic in a cohort of ischemic stroke patients [J]. Journal of Capital Medical University, 2023, 44(1): 49-53. |
[2] | Qin Linhui, Li Ning, Yang Yu, Yang Yong, Ren Changhong. Limb remote ischemic perconditioning combined with remote ischemic postconditioning promotes neurogenesis in rat models of ischemic stroke [J]. Journal of Capital Medical University, 2023, 44(1): 54-61. |
[3] | Li Xue, Fan Junfen, Wang Rongliang, Ma Qingfeng, Luo Yumin, Zhao Haiping. Epigenetic regulation of HDAC2 on TBC protein family members of neutrophils in patients with ischemic stroke [J]. Journal of Capital Medical University, 2023, 44(1): 62-71. |
[4] | Jiang Fucheng, Huang Jyumei, Feng Yuexian, Zhong Hongliang, Jia Jianwen, Yang Hongchao, Liu He, Liu Yang. The evaluation of the efficacy and prognosis of conscious sedation in endovascular treatment in acute ischemic stroke [J]. Journal of Capital Medical University, 2023, 44(1): 72-77. |
[5] | Li Sen, Guo Xuewen, Zhao Xin, Huang Anqi, Lin Jingge, Li Xingmao, Li Xiu, Du Yifeng, Zhao Yongmei, Bai Jie, Xia Zhangyong. Correlation between glycemic variability and neurological deterioration in patients with acute ischemic stroke and diabetes mellitus [J]. Journal of Capital Medical University, 2023, 44(1): 78-84. |
[6] | Gu Qiang, Yu Xiaojun, Zhang Jin. Analysis of clinical characteristics and prognosis of the very old and young old patients with mild ischemic stroke [J]. Journal of Capital Medical University, 2022, 43(3): 474-479. |
[7] | Zhao Wenbo, Ren Changhong, Li Sijie, Ma Hongrui, Ji Xunming. Research and application of a new technical system of hypoxic and ischemic conditioning for prevention and treatment of ischemic stroke——The Second Prize of 2020 National Science and Technology Progress [J]. Journal of Capital Medical University, 2022, 43(1): 1-5. |
[8] | Li Jun, Li Shuoshuo, Peng Zhixin, Liao Yajin, Cheng Jinbo, Yuan Zengqiang. Role of microglial histone deacetylases 3 in hypobaric hypoxia-induced oxidative stress [J]. Journal of Capital Medical University, 2022, 43(1): 91-98. |
[9] | Deng Hui, Wang Yong, Chen Xiaolan, Qin Chong, Pan Lei. Effects of hypobaric hypoxia stimulation at different times on pulmonary arterial pressure and lung tissue in rats [J]. Journal of Capital Medical University, 2021, 42(4): 596-600. |
[10] | Fang Yalan, Yang Nan, Zhao Yongmei, Huang Yuyou, Li Jincheng, Duan Yunxia, Gao Li, Luo Yumin. Effects of chrysophanol on HIF-1α and VEGF expressions in mice with focal cerebral ischemia/reperfusion injury [J]. Journal of Capital Medical University, 2021, 42(2): 219-224. |
[11] | Wang Yuqing, Chen Zhigang, Li Fangfang, Zhang Sijia, Luo Yumin, Zhao Haiping. Changes of Pbk and its correlation with cytokine IGF-1 in glial cells after oxygen and glucose deprivation [J]. Journal of Capital Medical University, 2021, 42(2): 251-256. |
[12] | Wang Xuan, Ma Chongyang, Zhang Yawen, Cheng Hongfa, Zhang Qiuxia. A network pharmacology approach to uncover the molecular mechanisms of Houshiheisan for treatment of ischemic stroke [J]. Journal of Capital Medical University, 2021, 42(1): 43-52. |
[13] | Li Ming, Li Sijie, Wu Chuanjie, Zhao Wenbo, Gu Chaoxiong, Ji Xunming. Focusing on clinical problems and promoting the transformation of scientific and technological achievements——Professor Ji Xunming [J]. Journal of Capital Medical University, 2020, 41(5): 748-751. |
[14] | Shan Yi, Li Jing, Xu Xiaoyin. Functional and molecular imaging of ischemic stroke——Professor Lu Jie [J]. Journal of Capital Medical University, 2020, 41(5): 788-794. |
[15] | Li Binghui. Chemical nature of metabolic reprogramming——Professor Li Binghui [J]. Journal of Capital Medical University, 2020, 41(5): 795-799. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||