Journal of Capital Medical University ›› 2020, Vol. 41 ›› Issue (4): 664-670.doi: 10.3969/j.issn.1006-7795.2020.04.029
• Review • Previous Articles Next Articles
Wu Jian1, Gu Yakun2, Liu Jia2
Received:2020-06-23
Online:2020-08-21
Published:2020-07-22
Supported by:CLC Number:
Wu Jian, Gu Yakun, Liu Jia. Research progresses in neuroprotective effects of ischemic/hypoxia preconditioning[J]. Journal of Capital Medical University, 2020, 41(4): 664-670.
| [1] | Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986, 74(5):1124-1136. |
| [2] | Hausenloy D J and Yellon D M. Ischaemic conditioning and reperfusion injury[J]. Nat Rev Cardiol, 2016, 13(4):193-209. |
| [3] | McDonough A, Weinstein J R. The role of microglia in ischemic preconditioning[J]. Glia, 2020, 68(3):455-471. |
| [4] | Li C, Xu M, Wu Y, et al. Limb remote ischemic preconditioning attenuates lung injury after pulmonary resection under propofol-remifentanil anesthesia:a randomized controlled study[J]. Anesthesiology, 2014, 121(2):249-259. |
| [5] | Li S, Hafeez A, Noorulla F, et al. Preconditioning in neuroprotection:from hypoxia to ischemia[J]. Prog Neurobiol, 2017, 157:79-91. |
| [6] | Ekeloef S, Homilius M, Stilling M, et al. The effect of remote ischaemic preconditioning on myocardial injury in emergency hip fracture surgery (PIXIE trial):phase Ⅱ randomised clinical trial[J]. BMJ, 2019, 367:l6395. |
| [7] | Lee P, Chandel N S, Simon M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. (2020-05-14).. https://doi:10.1038/s41580-020-0227-y. |
| [8] | Zhu T, Zhan L, Liang D, et al. Hypoxia-inducible factor 1alpha mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia[J]. J Neuropathol Exp Neurol, 2014, 73(10):975-986. |
| [9] | Apte R S, Chen D S, Ferrara N. VEGF in signaling and disease:beyond discovery and development[J]. Cell, 2019, 176(6):1248-1264. |
| [10] | Shao G, Gao C Y, Lu G W. Alterations of hypoxia-inducible factor-1 alpha in the hippocampus of mice acutely and repeatedly exposed to hypoxia[J]. Neurosignals, 2005, 14(5):255-261. |
| [11] | Veys K, Fan Z, Ghobrial M, et al. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. (2020-05-14).. https://doi:10.1161/CIRCRESAHA.119.316463. |
| [12] | Joost H G, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators:nomenclature, sequence characteristics, and potential function of its novel members (review)[J]. Mol Membr Biol, 2001, 18(4):247-256. |
| [13] | Kuhrt D, Wojchowski D M. Emerging EPO and EPO receptor regulators and signal transducers[J]. Blood, 2015, 125(23):3536-3541. |
| [14] | Bickler P E, Buck L T. Hypoxia tolerance in reptiles, amphibians, and fishes:life with variable oxygen availability[J]. Annu Rev Physiol, 2007, 69:145-170. |
| [15] | Stenzel-Poore M P, Stevens S L, Xiong Z, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia:similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states[J]. Lancet, 2003, 362(9389):1028-1037. |
| [16] | Divald A, Kivity S, Wang P, et al. Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits[J]. Circ Res, 2010, 106(12):1829-1838. |
| [17] | Bolanos J P, Almeida A, Moncada S. Glycolysis:a bioenergetic or a survival pathway?[J]. Trends Biochem Sci, 2010, 35(3):145-149. |
| [18] | Sies H and Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol.(2020-03-30).. https://doi:10.1038/s41580-020-0230-3. |
| [19] | Bell K F, Al-Mubarak B, Fowler J H, et al. Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning[J]. Proc Natl Acad Sci U S A, 2011, 108(1):E1-2; author reply E3-4. |
| [20] | Nadtochiy S M, Baker P R, Freeman B A, et al. Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning:implications for cardioprotection[J]. Cardiovasc Res, 2009, 82(2):333-340. |
| [21] | Kannurpatti S S. Mitochondrial calcium homeostasis:implications for neurovascular and neurometabolic coupling[J]. J Cereb Blood Flow Metab, 2017, 37(2):381-395. |
| [22] | Sheng R, Liu X Q, Zhang L S, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning[J]. Autophagy, 2012, 8(3):310-325. |
| [23] | Azad P, Ryu J, Haddad G G. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia[J]. Free Radic Biol Med, 2011, 51(2):530-538. |
| [24] | Shi K, Tian D C, Li Z G, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11):1058-1066. |
| [25] | Gelderblom M, Leypoldt F, Steinbach K, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke[J]. Stroke, 2009, 40(5):1849-1857. |
| [26] | Cui G H, Wu J, Mou F F, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018, 32(2):654-668. |
| [27] | Sen E, Basu A, Willing L B, et al. Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties[J]. ASN Neuro, 2011, 3(3):e00062. |
| [28] | Song W M, Colonna M. The identity and function of microglia in neurodegeneration[J]. Nat Immunol, 2018, 19(10):1048-1058. |
| [29] | Tang Y, Le W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases[J]. Mol Neurobiol, 2016, 53(2):1181-1194. |
| [30] | Wang J, Xing H, Wan L, et al. Treatment targets for M2 microglia polarization in ischemic stroke[J]. Biomed Pharmacother, 2018, 105:518-525. |
| [31] | Bock F J, Tait S W G. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020, 21(2):85-100. |
| [32] | Miranda C, Fagundes D J, Miranda E, et al. The role of ischemic preconditioning in the expression of apoptosis-related genes in a rat model of intestinal ischemia-reperfusion injury[J]. Acta Cir Bras, 2019, 34(5):e201900501. |
| [33] | Olloquequi J, Cornejo-Cordova E, Verdaguer E, et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders:therapeutic implications[J]. J Psychopharmacol, 2018, 32(3):265-275. |
| [34] | Magi S, Piccirillo S, Amoroso S. The dual face of glutamate:from a neurotoxin to a potential survival factor-metabolic implications in health and disease[J]. Cell Mol Life Sci, 2019, 76(8):1473-1488. |
| [35] | Fullana N, Gasull-Camos J, Tarres-Gatius M, et al. Astrocyte control of glutamatergic activity:downstream effects on serotonergic function and emotional behavior[J]. Neuropharmacology, 2020, 166:107914. |
| [36] | Gong J, Gong S, Zhang M, et al. Cerebral ischemic preconditioning reduces glutamate excitotoxicity by up-regulating the uptake activity of GLT-1 in rats[J]. Amino Acids, 2014, 46(6):1537-1545. |
| [37] | Stavoe A K H, Holzbaur E L F. Autophagy in Neurons[J]. Annu Rev Cell Dev Biol, 2019, 35:477-500. |
| [38] | Park H K, Chu K, Jung K H, et al. Autophagy is involved in the ischemic preconditioning[J]. Neurosci Lett, 2009, 451(1):16-19. |
| [39] | Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice[J]. Nature, 2006, 441(7095):880-884. |
| [40] | Grotta J C. tPA for stroke:important progress in achieving faster treatment[J]. JAMA, 2014, 311(16):1615-1617. |
| [41] | Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia:from experimental strategies to clinical use[J]. Lancet Neurol, 2009, 8(4):398-412. |
| [42] | Emberson J, Lees K R, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke:a meta-analysis of individual patient data from randomised trials[J]. Lancet, 2014, 384(9958):1929-1935. |
| [43] | Wang W W, Chen D Z, Zhao M, et al. Prior transient ischemic attacks may have a neuroprotective effect in patients with ischemic stroke[J]. Arch Med Sci, 2017, 13(5):1057-1061. |
| [44] | Vellimana A K, Milner E, Azad T D, et al. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage-induced cerebral vasospasm. Stroke, 2011, 42:776-782. |
| [45] | Chan M T, Boet R, Ng S C, et al. Effect of ischemic preconditioning on brain tissue gases and pH during temporary cerebral artery occlusion[J]. Acta Neurochir Suppl, 2005, 95:93-96. |
| [46] | Sales A H A, Barz M, Bette S, et al. Impact of ischemic preconditioning on surgical treatment of brain tumors:a single-center, randomized, double-blind, controlled trial[J]. BMC Med, 2017, 15(1):137. |
| [47] | Manukhina E B, Downey H F, Shi X, et al. Intermittent hypoxia training protects cerebrovascular function in Alzheimer's disease[J]. Exp Biol Med (Maywood), 2016, 241(12):1351-1363. |
| [48] | Zhang K, Zhao T, Huang X, et al. Notch1 mediates postnatal neurogenesis in hippocampus enhanced by intermittent hypoxia[J]. Neurobiol Dis, 2014, 64:66-78. |
| [49] | Wei L, Sun C, Lei M, et al. Activation of Wnt/beta-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity[J]. J Mol Neurosci, 2013, 49(1):105-115. |
| [50] | Mazumdar J, O'Brien W T, Johnson R S, et al. O2 regulates stem cells through Wnt/beta-catenin signalling[J]. Nat Cell Biol, 2010, 12(10):1007-1013. |
| [51] | Vaughn C B, Jakimovski D, Kavak K S, et al. Epidemiology and treatment of multiple sclerosis in elderly populations[J]. Nat Rev Neurol, 2019, 15(6):329-342. |
| [52] | Faissner S, Plemel J R, Gold R, et al. Progressive multiple sclerosis:from pathophysiology to therapeutic strategies[J]. Nat Rev Drug Discov, 2019, 18(12):905-922. |
| [53] | Van Kaer L, Postoak J L, Wang C, et al. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE[J]. Cell Mol Immunol, 2019, 16(6):531-539. |
| [54] | Esen N, Katyshev V, Serkin Z, et al. Endogenous adaptation to low oxygen modulates T-cell regulatory pathways in EAE[J]. J Neuroinflammation, 2016, 13:13. |
| [55] | Halder S K, Kant R, and Milner R. Hypoxic pre-conditioning suppresses experimental autoimmune encephalomyelitis by modifying multiple properties of blood vessels[J]. Acta Neuropathol Commun, 2018, 6(1):86. |
| [56] | Prosser-Loose E J, Hassan A, Mitchell G S, et al. Delayed Intervention with Intermittent Hypoxia and Task Training Improves Forelimb Function in a Rat Model of Cervical Spinal Injury[J]. J Neurotrauma, 2015, 32(18):1403-1412. |
| [57] | Wei L, Fraser J L, Lu Z Y, et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats[J]. Neurobiol Dis, 2012, 46(3):635-645. |
| [58] | Oh J S, Ha Y, An S S, et al. Hypoxia-preconditioned adipose tissue-derived mesenchymal stem cell increase the survival and gene expression of engineered neural stem cells in a spinal cord injury model[J]. Neurosci Lett, 2010, 472(3):215-219. |
| [1] | Guo Yu, Chen Weiguan, Zhou Sanlian, Tang Liqiao, Sun Wangyan, Zhang Dongmei, Lu Hongjian. Correlation between serum glycoprotein non-metastatic melanoma protein B levels and disease severity and prognosis in patients with acute ischemic stroke [J]. Journal of Capital Medical University, 2025, 46(4): 702-709. |
| [2] | Li Qing, Zhao Xiaowen, Ren Jing, Yu Miao, Cui Hanfang, Ding Fangyuan, Liu Hao, Li Qiong, Wang Fan, Li Qing, Chen Xiyan, Lu Chengbiao, Li Shaomin, Zhao Jianhua. The correlation of serum hypoxia-inducible factor-1α level with cerebral microbleeds and cognitive impairment [J]. Journal of Capital Medical University, 2025, 46(2): 216-227. |
| [3] | Jing Jiao, Zhang Siyao, Liu Yanling, Wang Fen, Xiao Wei, Wang Zhenzhong. Effect of large artery atherosclerosis subtype on the efficacy of Ginkgo Diterpene Lactone Meglumine in acute ischemic stroke [J]. Journal of Capital Medical University, 2025, 46(2): 228-233. |
| [4] | Zi Xiaohui, Xia Xue, Li jing, Zhang Xiaoli, Zhou Quan, Wang Anxin, Wang Yilong. Advances in the application of antiplatelet therapy in intravenous thrombolysis for acute ischemic stroke patients [J]. Journal of Capital Medical University, 2025, 46(2): 234-242. |
| [5] | Wu Lin, Sun Junzhao, Han Chengchen, Nie Xingxing, Tian Yuhong, Pi Hongying. Observation of clinical effect of remote ischemic conditioning in patients with spontaneous intracerebral hemorrhage [J]. Journal of Capital Medical University, 2025, 46(2): 356-362. |
| [6] | Chu Xuehong, Shen Yingjie, Wang Yaolou, Dong Xiao, Liu Yuanyuan, Feng Yan, Jiang Miaowen, Li Ming, Ji Xunming, Wu Chuanjie. Exploring the causal relationship between extensive perivascular space burden and ischemic stroke and its subtypes and transient ischemic attack based on Mendelian randomization [J]. Journal of Capital Medical University, 2025, 46(1): 22-33. |
| [7] | Wang Yinping, Meng Cancan, Wu Wenjuan, Yang Zhitang. The expressions of CD62P, CD40L, and Rev-erbα after ischemic stroke on different onset times [J]. Journal of Capital Medical University, 2025, 46(1): 34-40. |
| [8] | Zhan Yanli, Li Yiyin, Li Ping, Sun Jingping, Huang Liangtong, Cai Xueli. Analysis of the current status and efficacy of acute ischemic stroke treatment based on hierarchical medical service network [J]. Journal of Capital Medical University, 2025, 46(1): 41-47. |
| [9] | Yang Xiao, Meng Yuanyuan, Yang Jingyi, Wang Shuhan, Zhang Ligong. Predictive value of atherogenic index of plasma index, triglyceride-glucose index and cerebral small vascular disease imaging markers on early neurological response after intravenous thrombolysis in patients with acute ischemic stroke [J]. Journal of Capital Medical University, 2025, 46(1): 48-55. |
| [10] | Zhang Meng, Ma Yongxin, Jia Qiong , Zhang Dongwei, Zhang Xinhong, Xu Yaoming . Clinical observation on the efficacy and safety of intravenous thrombolysis in the treatment of acute mild non-disabling ischemic stroke: a single-center retrospective observational study [J]. Journal of Capital Medical University, 2025, 46(1): 56-62. |
| [11] | Qiao Yue, Li Chuanhui, Zhao Wenbo. The current status and future directions of reperfusion therapy for acute ischemic stroke [J]. Journal of Capital Medical University, 2025, 46(1): 68-70. |
| [12] | Li Xingmao, Li Xiu, Wang Ting, Zhao Xin, Wang Deyang, Shang Haiyan, Zhao Yongmei, Li Sen. Effects of GLP-1 receptor agonists on cognitive function in patients with type 2 diabetes mellitus after acute ischemic stroke [J]. Journal of Capital Medical University, 2024, 45(6): 1029-1037. |
| [13] | Shen Tong, Li Fangfang, Fan Junfen, Luo Yumin. Correlation analysis of plasma YAP level with stroke prognostic factors and post-stroke inflammation [J]. Journal of Capital Medical University, 2024, 45(6): 1071-1078. |
| [14] | Gu Chaoxiong, Li Ming. Stay true to the original aspiration, forge ahead, and strive for excellence in the realm of science—Professor Ji Xunming, academician of Chinese Academy of Engineering [J]. Journal of Capital Medical University, 2024, 45(3): 375-378. |
| [15] | Hu Zhengfang, Wang Juan, Jian Minyu, Han Ruquan. ffect of intraoperative oxygen concentration on postoperative neurological function and complications in patients undergoing cerebrovascular recanalization [J]. Journal of Capital Medical University, 2023, 44(5): 865-871. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||