[1] Duncombe J, Kitamura A, Hase Y, et al. Chronic cerebral hypoperfusion:a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia[J]. Clin Sci (Lond),2017, 131(19):2451-2468. [2] Hamano T, Hayashi K, Shirafuji N, et al. The implications of autophagy in alzheimer's disease[J]. Curr Alzheimer Res, 2018, 15(14):1283-1296. [3] Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia:a review[J]. Aging Dis,2017, 8(6):850-867. [4] Chen C, Li X, Gao P, et al. Baicalin attenuates alzheimER-like pathological changes and memory deficits induced by amyloid β1-42 protein[J]. Metab Brain Dis, 2015, 30(2):537-544. [5] Wang Z,Fan J,Wang J,et al,Chronic cerebral hypoperfusion induces long-lasting cognitive deficits accompanied by long-term hippocampal silent synapses increase in rats[J].Behav Brain Res,2016, 301:243-252. [6] Morris R. Developments of a water maze procedure for studying spatial learning in the rat[J]. J Neurosci Methods, 1984, 11(1):47-60. [7] Iadecola C. The pathobiology of vascular dementia[J].Neuron, 2013, 80(4):844-866. [8] Zhao Y, Gong C X. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration[J].Cell Mol Neurobiol,2015,35(1):101-110. [9] Kim S, Kang I H, Nam J B, et al. Ameliorating the effect of astragaloside Ⅳ on learning and memory deficit after chronic cerebral hypoperfusion in rats[J]. Molecules, 2015, 20(2):1904-1921. [10] Jing Z, Shi C, Zhu L, et al. Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment[J]. J Cereb Blood Flow Metab, 2015, 35(8):1249-1259. [11] Wang D, Kiesinger P R. Autophagy, neuron-specific degradation and neurodegeneration[J]. Autophagy, 2012, 8(4):711-713. [12] Kang R, Zeh H J, Lotze M T, et al. The beclin 1 network regulates autophagy and apoptosis[J]. Cell Death Differ, 2011, 18(4):571-580. [13] Klionsky D J, Abdalla F C, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy[J]. Autophagy, 2012, 8(4):445-544. [14] Ghavami S, Cunnington R H, Yeganeh B, et al. Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac my fibroblasts[J]. Biochim Biophys Acta, 2012, 1823(12):2274-2286. [15] Gong C, Bauvy C, Tonelli G, et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells[J].Oncogene, 2013, 32(18):2261-2272. [16] Dou Z, Xu C, Donahue G, et al. Autophagy mediates degradation of nuclear lamina[J]. Nature, 2015,527(7576):105-109. [17] 邹文颖, 李玉梅, 付剑亮. 慢性脑低灌注所致认知障碍大鼠海马区自噬机制的初步研究[J]. 中国临床神经科学,2016, 24(1):33-41. [18] Ohta K, Mizuno A, Ueda M, et al. Autophagy impairment stimulates PS1 expression and gamma-secretase activity[J]. Autophagy, 2010, 6(3):345-352. [19] 徐昕, 颜小华. 黄芩苷治疗脑损伤的研究进展[J].实用临床医学, 2012, 13(8):131-136. [20] Chen C, Li X H, Gao P L, et al. Baicalin attenuates Alzheimer-like pathological changes and memory deficits induced by amyloid β1-42 protein[J]. Metab Brain Dis, 2015, 30(2):537-544. [21] Zhao J W, Lu S, Yu H, et al. Baicalin and ginsenoside Rb1 promote the proliferation and differentiation of neural stem cells in Alzheimer's disease model rats[J]. Brain Res, 2018, 1678:187-194. |