[1] Luxen S, Noack D, Frausto M, et al.Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells[J].J Cell Sci, 2009,122(Pt8):1238-1247. [2] Grandvaux N, Mariani M, Fink K. Lung epithelial NOX/DUOX and respiratory virus infections[J]. Clin Sci, 2015, 128(6), 337-347. [3] Lee I T, Yang C M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases[J]. Biochem Pharmacol, 2012,84(5):581-590. [4] Bartoli M L, Novelli F, Costa F,et al. Malondialdehyde in exhaled breath condensateasa marker of oxidative stressin different pulmonary diseases[J].Mediators Inflamm, 2011, 2011:891752. [5] 刘鲜艳,陈娟. NADPH氧化酶与呼吸系统疾病[J]. 国际呼吸杂志, 2014, 34(14):1116-517. [6] Griffith B, Pendyala S, Hecker L, et al. NOX enzymes and pulmonary disease[J]. Antioxid Redox Signal, 2009,11(10):2505-2516. [7] Sirker A, Zhang M, Shah A M. NADPH oxidases in cardiovascular disease:insights from in vivo models and clinical studies[J]. Basic Res Cardiol, 2011, 106(5):735-747. [8] Panday A, Sahoo M K, Osorio D,et al. NADPH oxidases:an overview from structure to innate immunity-associated pathologies[J]. Cell Mol Immunol, 2015,12(1):5-23. [9] Bedard K,Krause K H. The NOX familyof ROS-generating NADPH oxidase:physiology and pathophysiology[J].Physiol Rev,2007,87(1):245-313. [10] 冷丽丽, 唐圣松. NADPH氧化酶NOX家族的组织分布及生理功能[J]. 国际病理科学与临床杂志, 2008, 28(1):19-23. [11] 韩晓燕, 高丽萍,刘箐. NADPH氧化酶NOX家族与疾病的关系[J]. 国际病理科学与临床杂志, 2010, 30(6):513-517. [12] Brown D I, Griendling K K. Nox proteins in signal transduction[J]. Free RadicBiol Med, 2009, 47(9):1239-1253. [13] Sies H. Oxidative stress:a concept in redox biology and medicine[J]. Redox Biol, 2015, 4:180-183. [14] Zhuan B, Yu Y, Yang Z, et al. Mechanisms of oxidative stress effects of the NADPH oxidase-ROS-NF-κB transductionpathway and VPO1 on patients with chronicobstructive pulmonary disease combinedwith pulmonary hypertension[J]. Eur Rev Med Pharmacol Sci, 2017, 21(15):3459-3464. [15] Krause K H. Tissue distribution and putative physiological function of NOX family NADPH oxidases[J].Jpn J Infect Dis, 2004,57(5):S28-29. [16] 李华斌.变应性鼻炎的发病机制及诊治进展[J]. 中华耳鼻咽喉头颈外科杂志, 2014, 49(4):347-352. [17] Barnes P J. Pathophysiology of allergic inflammation[J]. Immunol Rev,2011,242(1):31-50. [18] Dharajiya N, Boldogh I, Cardenas V, et al. Role of pollen NAD(P)H oxidase in allergic inflammation[J]. Curr Opin Allergy Clin Immunol, 2008, 8(1):57-62. [19] 矫健, 张伟, 孟娜. 变应性鼻炎患者血清氧化应激状态研究[J]. 中华耳鼻咽喉头颈外科杂志, 2010, 45(6):455-458. [20] Moon J H, Kim T H, Lee H M,et al. Over expression of the superoxide anion and NADPH oxidase isoforms 1 and 4(NOX1 and NOX4)in all ergic nasal mucosa[J].Am J Rhinol Allergy, 2009, 23(4):370-376. [21] Dagli M, Eryilmaz A, Besler T, et al.Role of free radicals and antioxidants in nasal polyps[J].Laryngoscope, 2004,114(7):1200-1203. [22] Cheng Y K, Tsai M H, Lin C D, et al. Oxidative stress in nonallergic nasal polyps associated with bronchial hyperresponsiveness[J]. Allergy,2006,61(11):1290-1298. [23] Joo J H,Ryu J H,Kim C H,et al.Dual oxidase 2 is essential for the toll-like receptor 5-mediated inflamatory response in airway mucosa[J].Antioxid Redox Signal,2012,16(1):57-70. [24] Cho D Y, Nayak J V, Bravo D T, et al. Expression of dual oxidases and secreted cytokines in chronic rhinosinusitis[J]. Int Forum Allergy Rhinol, 2013,3(5):376-383. [25] 马英民, 伍伟景. 慢性鼻窦炎病变黏膜和鼻息肉组织中超氧化物歧化酶活性和丙二醛含量的变化及其意义[J]. 中国耳鼻咽喉颅底外科杂志, 2008, 14(4):255-258. [26] Cho Y S, Moon H B. The role of oxidative stress in the pathogenesis of asthma[J]. Allergy Asthma Immunol Res, 2010, 2(3):183-187. [27] Zuo L, Otenbaker N P, Rose B A, et al. Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma[J]. Mol Immunol, 2013, 56(1-2):57-63. [28] Kirkham P, Rahman I. Oxidative stress in asthma and COPD:antioxidants as a therapeutic strategy[J]. Pharmacol Ther, 2006,111(2):476-494. [29] Bernard K, Hecker L, Luckhardt T R, et al. NADPH Oxidases in lung health and disease[J].Antioxid Redox Signal, 2014, 20(17):2838-2853. [30] Harijith A, Natarajan V, Fu P. The role of nicotinamide adenine dinucleotide phosphate oxidases in lung architecture remodeling[J].Antioxidants (Basel), 2017, 6(4):E104. [31] Nagaraj C, Haitchi H M, Heinemann A,et al.Increased expression of p22phox mediates airway hyperresponsiveness in an experimental model of asthma[J]. Antioxid Redox Signal, 2017,27(18):1460-1472. [32] Habibovic A, Hristova M, Heppner D E, et al.DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma[J]. JCI Insight, 2016, 1(18):e88811. [33] Vogelmeier C F, Criner G J, Martínez F J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report:GOLD executive summary[J].Arch Bronconeumol, 2017, 53(3):128-149. [34] Fischer B M, Voynow J A, Ghio A J. COPD:balancing oxidants and antioxidants[J].Int J Chron Obstruct Pulmon Dis, 2015,10:261-276. [35] Wiegman C H, Michaeloudes C, Haji G, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease[J].J Allergy Clin Immunol, 2015,136(3):769-780. [36] Aggarwal S, Gross C M, Sharma S, et al. Reactive oxygen species in pulmonary vascular remodeling[J].Compr Physiol, 2013,3(3):1011-1034. [37] Liu X, Hao B, Ma A, et al.The Expression of NOX4 in smooth muscles of small airway correlates with the disease severity of COPD[J]. Biomed Res Int, 2016,2016:2891810. [38] Hollins F, Sutcliffe A, Gomez E, et al. Airway smooth muscle NOX4 isupregulated and modulates ROSgeneration in COPD[J]. Respir Res, 2016, 17(1):84. [39] San Martin A, Griendling K K. NADPH oxidases:progress and opportunities[J].Antioxid Redox Signal, 2014,20(17):2692-2694. |